Overexpression of the PeaT1 Elicitor Gene from Alternaria tenuissima Improves Drought Tolerance in Rice Plants via Interaction with a Myo-Inositol Oxygenase

文献类型: 外文期刊

第一作者: Dong, Yijie

作者: Dong, Yijie;Zhang, Yi;Yang, Xiufeng;Qiu, Dewen;Shi, Fachao

作者机构:

关键词: elicitor;PeaT1;interaction;OsMIOX;overexpression

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Abiotic stresses, especially drought, seriously threaten cereal crops yields and quality. In this study, we observed that the rice plants of overexpression the Alternariatenuissima PeaT1 gene showed enhanced drought stress tolerance and increased the survival rate following a drought treatment. In PeaT1-overexpressing (PeaT1OE) plants, abscisic acid and chlorophyll content significantly increased, while the malondialdehyde (MDA) content decreased compared with the wild-type plants. Additionally, we confirmed that the transcript levels of drought-responsive genes, including OsAM1, OsLP2, and OsDST, were prominently lower in the PeaT1OE plants. In contrast, expression levels of genes encoding positive drought stress regulators including OsSKIPa, OsCPK9, OsNAC9, OSEREBP1, and OsTPKb were upregulated in PeaT1OE plants. Furthermore, combing the yeast two-hybrid assay, we found that PeaT1 could interact with amyoinositol oxygenase (OsMIOX), which was verified by pull-down assay. Interestingly, OsMIOX was highly expressed in PeaT1OE plants during the drought treatment. Additionally, the OsMIOX-GFP fusion protein co-localized with the endoplasmic reticulum (ER) marker in tobacco protoplasts, suggesting OsMIOX performs its function in ER. Therefore, our results are useful for elucidating the molecular mechanism underlying the improvement of drought tolerance by PeaT1.

分类号:

  • 相关文献

[1]Shape evolution with temperature of a thermotolerant protein (PeaT1) in solution detected by small angle X-ray scattering. Wang, Wei,Zhang, Kunhao,Cai, Quan,Mo, Guang,Cheng, Weidong,Wang, Dehong,Gong, Yu,Chen, Zhongjun,Wu, Zhonghua,Xing, Xueqing,Cheng, Weidong,Wang, Dehong,Gong, Yu,Wu, Zhonghua,Liu, Quan,Li, Tang,Qiu, Dewen,Liu, Quan.

[2]Stable isotope labelled mass spectrometry for quantification of the relative abundances for expressed proteins induced by PeaT1. Yang XiuFen,Zeng HongMei,Mao JianJun,Liu Hua,Zhang YunHua,Qiu DeWen. 2010

[3]Inhibitory effect of esterified lactoferin and lactoferin against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Xia, Xiao-Ming,Li, Peng-peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[4]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[5]Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Liu, Zhipeng,Liu, Wenxian,Zeng, Hongmei,Yang, Xiufen,Guo, Lihua,Qiu, Dewen. 2014

[6]Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. Wang, Zhenzhen,Yang, Xiufen,Guo, Lihua,Qiu, Dewen,Zeng, Hongmei. 2016

[7]Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Liang, Yingbo,Qiu, Dewen,Yuan, Jingjing,Yang, Xiufen. 2017

[8]Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong.

[9]Production and metabolic engineering of bioactive substances in plant hairy root culture. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang,Zhu, Xue-Mei.

[10]Induction of phytochemical glyceollins accumulation in soybean following treatment with biotic elicitor (Aspergillus oryzae). Eromosele, Ojokoh,Bo, Shi,Ping, Liang. 2013

[11]Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bai, ZH,Zhang, HX,Qi, HY,Peng, XW,Li, BJ.

[12]The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Yang, Xiufen,Zeng, Hongmei,Liu, Hua,Zhou, Tingting,Tan, Beibei,Yuan, Jingjing,Guo, Lihua,Qiu, Dewen.

[13]Elicitation of the hypersensitive responses in tabacco by a 10.6 kD proteinaceous elicitor from Phytophthora palmi. Cai, YY,Chen, J. 1999

[14]Nitric oxide synthase as a postharvest response in pathogen resistance of tomato fruit. Zheng, Yang,Shen, Lin,Yu, Mengmeng,Liu, Lingyi,Sheng, Jiping,Fan, Bei,Zhao, Danying. 2011

[15]Influence of the application of three different elicitors on soybean plants on the concentrations of several isoflavones in soybean seeds. Zhang, Bo,Hettiarachchy, Navam,Chen, Pengyin,Horax, Ronny,Cornelious, Brian,Zhu, Danhua.

[16]Evaluation of tricin, a stylet probing stimulant of brown planthopper, in infested and non-infested rice plants. Zhang, Z.,Li, Y.,Xiao, H.,Li, Y.,Zhang, Y.,Cui, B.,Yan, S..

[17]Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Haiyan Shi,Zhihao Liu,Li Zhu,Chaojun Zhang,Yun Chen,Ying Zhou,Fuguang Li,Xuebao Li. 2012

[18]Molecular Cloning and Function Analysis of Two SQUAMOSA-Like MADS-Box Genes From Gossypium hirsutum L.. Wenxiang Zhang,Shuli Fan,Chaoyou Pang,Hengling Wei,Jianhui Ma,Meizhen Song,Shuxun Yu. 2013

[19]Virus-Based MicroRNA Silencing and Overexpressing in Common Wheat (Triticum aestivum L.). Jian, Chao,Chi, Qing,Wang, Shijuan,Ma, Meng,Liu, Xiangli,Zhao, Huixian,Han, Ran,Zhao, Huixian. 2017

[20]Isolation and characterization of a stress responsive small GTP-binding protein AhRabG3b in peanut (Arachis hypogaea L.). Yu, Shan-Lin,Sui, Jiong-Ming,Li, Rui,Fan, Qian-Cheng,Zheng, Chun-Hua,Wang, Jing-Shan,Qiao, Li-Xian,Song, Lin. 2013

作者其他论文 更多>>