[1]Meat production from crossbred and domestic yaks in China. Jialin, B,Mingqiang, W,Zhonglin, L,Chesworth, JM. 1998
[2]First serologic survey of Q fever in free-range yaks in China. Yin, M. Y.,Tan, Q. D.,Qin, S. Y.,Hu, L. Y.,Yin, M. Y.,Liu, G. H.,Zhou, D. H.,Zhu, X. Q.,Zhou, D. H.,Zhu, X. Q.. 2015
[3]Rumen ciliated protozoan fauna of the yak (Bos grunniens) in China with the description of Entodinium monuo n. sp.. Guirong,Su, NR,Hua, ZX,Zhu, S,Imai, SC.
[4]Growth and development of testes in domesticated and hybrid (wild X domesticated) yak bulls. Yan, P,Pan, HQ,Zhi, DJ. 2000
[5]Seroprevalence and risk factors of bovine viral diarrhoea virus (BVDV) infection in yaks (Bos grunniens) in northwest China. Ma, Jian-Gang,Cong, Wei,Feng, Sheng-Yong,Zhou, Dong-Hui,Zhu, Xing-Quan,Yin, Hong,Ma, Jian-Gang,Cong, Wei,Wang, Yi-Ming,Hu, Gui-Xue,Zhang, Fu-Heng.
[6]Milk production and composition responds to dietary neutral detergent fiber and starch ratio in dairy cows. Zhao, Meng,Bu, Dengpan,Wang, Jiaqi,Zhou, Xiaoqiao,Zhu, Dan,Zhang, Ting,Niu, Junli,Ma, Lu,Bu, Dengpan,Bu, Dengpan.
[7]Responses of energy balance, physiology, and production for transition dairy cows fed with a low-energy prepartum diet during hot season. Su, Huawei,Su, Huawei,Wang, Yachun,Wang, Fuwei,Cao, Zhijun,Rahman, Muhammad Aziz Ur,Cao, Binghai,Li, Shengli,Zhang, Qian.
[8]Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. He, Yanghua,Chu, Qin,Ma, Peipei,Wang, Yachun,Zhang, Qin,Sun, Dongxiao,Zhang, Yi,Yu, Ying,Zhang, Yuan,He, Yanghua,Ma, Peipei,Wang, Yachun,Zhang, Qin,Sun, Dongxiao,Zhang, Yi,Yu, Ying,Zhang, Yuan,Chu, Qin.
[9]Two Novel SNPs in HSF1 Gene Are Associated with Thermal Tolerance Traits in Chinese Holstein Cattle. Li, Qiu-Ling,Ju, Zhi-Hua,Huang, Jin-Ming,Li, Jian-Bin,Li, Rong-Ling,Hou, Ming-Hai,Wang, Chang-Fa,Zhong, Ji-Feng.
[10]Synonymous single nucleotide polymorphisms in the MC4R gene that are significantly associated with milk production traits in water buffaloes. Deng, T. X.,Pang, C. Y.,Liang, X. W.,Liu, M. Q.,Zhang, C.. 2016
[11]Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Sun, P.,Wang, J. Q.,Deng, L. F.. 2013
[12]Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows. Wang, Run L.,Liang, Jian G.,Lu, Lin,Zhang, Li Y.,Li, Su F.,Luo, Xu G.,Wang, Run L.,Li, Su F..
[13]Responses in Milk Yield, Milk Composition and Rumen Fermentation in Lactating Cows Receiving a Corn Straw or Mixed Forage Diet. Weng Xiuxiu,Li Fadi,Wang Dandan,Weng Xiuxiu,Bu Dengpan,Zhang Yangdong,Wang Dandan.
[14]Effect of feeding Bacillus subtilis natto fermentation product on milk production and composition, blood metabolites and rumen fermentation in early lactation dairy cows. Peng, H.,Wang, J. Q.,Kang, H. Y.,Dong, S. H.,Sun, P.,Bu, D. P.,Zhou, L. Y.,Kang, H. Y.,Dong, S. H.. 2012
[15]Short communication: Effects of replacing part of corn silage and alfalfa hay with Leymus chinensis hay on milk production and composition. Yan, R.,Han, J.,Zhang, Y.,Chen, S.,Undersander, D.,Zhang, Xian.