Mutation in Mg-Protoporphyrin IX Monomethyl Ester Cyclase Decreases Photosynthesis Capacity in Rice
文献类型: 外文期刊
第一作者: Wang, Xuexia
作者: Wang, Xuexia;Huang, Rongfeng;Quan, Ruidang;Wang, Xuexia;Huang, Rongfeng;Quan, Ruidang
作者机构:
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2017 年 12 卷 1 期
页码:
收录情况: SCI
摘要: In photosynthesis, the pigments chlorophyll a/b absorb light energy to convert to chemical energy in chloroplasts. Though most enzymes of chlorophyll biosynthesis from glutamyltRNA to chlorophyll a/b have been identified, the exact composition and regulation of the multimeric enzyme Mg-protoporphyrin IX monomethyl ester cyclase (MPEC) is largely unknown. In this study, we isolated a rice pale-green leaf mutant m167 with yellow-green leaf phenotype across the whole lifespan. Chlorophyll content decreases 43-51% and the granal stacks of chloroplasts becomes thinner in m167. Chlorophyll fluorescence parameters, including Fv/Fm (the maximum quantum efficiency of PSII) and quantum yield of PSII (Y(II)), were lower in m167 than those in wild type plants (WT), and photosynthesis rate decreases 40% in leaves of m167 mutant compared with WT plants, which lead to yield reduction in m167. Genetic analysis revealed that yellow-green leaf phenotype of m167 is controlled by a single recessive genetic locus. By positional cloning, a single mutated locus, G286A (Alanine 96 to Threonine in protein), was found in the coding sequence of LOC_ Os01g17170 (Rice Copper Response Defect 1, OsCRD1), encoding a putative subunit of MPEC. Expression profile analysis demonstrated that OsCRD1 is mainly expressed in green tissues of rice. Sequence alignment analysis of CRD1 indicated that Alanine 96 is very conserved in all green plants and photosynthetic bacteria. OsCRD1 protein mainly locates in chloroplast and the point mutation A96T in OsCRD1 does not change its location. Therefore, Alanine96 of OsCRD1 might be fundamental for MPEC activity, mutation of which leads to deficiency in chlorophyll biosynthesis and chloroplast development and decreases photosynthetic capacity in rice.
分类号:
- 相关文献
作者其他论文 更多>>
-
Ethylene Modulates Rice Root Plasticity under Abiotic Stresses
作者:Qin, Hua;Li, Yuxiang;Huang, Rongfeng;Qin, Hua;Huang, Rongfeng;Xiao, Minggang
关键词:root development; ethylene; abiotic stress; rice
-
Effects of Long-Term Controlled-Release Urea on Soil Greenhouse Gas Emissions in an Open-Field Lettuce System
作者:Wang, Xuexia;Cao, Bing;Zhao, Meng;Chen, Yanhua;Zhang, Jiajia;Wang, Jiachen;Liang, Lina;Wang, Xuexia;Cao, Bing;Zhao, Meng;Chen, Yanhua;Zhang, Jiajia;Wang, Jiachen;Liang, Lina;Zhou, Yapeng
关键词:N2O emissions; CO2 emissions; controlled-release fertilizer; DCD; lettuce yield
-
Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories
作者:Zhao, Meng;Wang, Xuexia;Cao, Bing;Zhang, Jiajia;Wang, Jiachen;Zou, Guoyuan;Chen, Yanhua;Li, Yifan;Li, Congping
关键词:Fertilising treatment; Polyurethane; Cadmium; Phytotoxicity; Rhizosphere environment
-
Localized nitrogen supply facilitates rice yield and nitrogen use efficiency by enabling root-zone nitrogen distribution and root growth
作者:Hu, Ren;Ding, Zijuan;Tian, Yingbing;Hou, Jun;Cao, Yuxian;Wang, Xuexia
关键词:rice; yield; controlled release urea; mechanical side deep fertilization; root zone fertilization
-
The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction
作者:Li, Yuxiang;Wang, Juan;Gao, Yadi;Quan, Ruidang;Zhao, Zihan;Jiang, Lei;Huang, Rongfeng;Qin, Hua;Wang, Juan;Huang, Rongfeng;Qin, Hua;Pandey, Bipin K.;Ogorek, Lucas Leon Peralta;Zhao, Yu
关键词:
-
OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil
作者:Qiao, Jinzhu;Quan, Ruidang;Wang, Juan;Li, Yuxiang;Xiao, Dinglin;Zhao, Zihan;Huang, Rongfeng;Qin, Hua;Quan, Ruidang;Wang, Juan;Huang, Rongfeng;Qin, Hua
关键词:ethylene; ROS; coleoptile growth; emergence rate; rice
-
A natural variation in OsDSK2a modulates plant growth and salt tolerance through phosphorylation by SnRK1A in rice
作者:Wang, Juan;Zhu, Rui;Qin, Hua;Quan, Ruidang;Li, Xiaoying;Jiang, Lei;Huang, Rongfeng;Wang, Juan;Qin, Hua;Quan, Ruidang;Huang, Rongfeng;Meng, Qingshi;Wei, Pengcheng
关键词:phosphorylation; natural variation; plant growth; salt tolerance; gibberellic acid metabolism