Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae

文献类型: 外文期刊

第一作者: Park Sung-chul

作者: Park Sung-chul;Kou Meng;Yan Hui;Tang Wei;Wang Xin;Liu Ya-ju;Zhang Yun-gang;Ma Dai-fu;Li Qiang;Yu Yi-cheng;Sun Jiang;Li Qiang;Sang-soo, Kwak

作者机构:

关键词: IbHKT1;Na+/K+ transporter;salt stress;sweet potato

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 10 期

页码:

收录情况: SCI

摘要: Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L-1 NaCl stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L-1 NaCl stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na+). Yeast complementation assay showed that IbHKT1 could take up K+ in 50 mmol L-1 K+ medium without the presence of NaCl. Moreover, Na+ uptake significantly increased in yeast overexpressing IbHKT1. These results showed that IbHKT1 transporter could have K+-Na+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.

分类号:

  • 相关文献

[1]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[2]Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Wang, Ji Dong,Wang, Ji Dong,Wang, Huoyan,Zhou, Jianmin,Chen, Xiaoqin,Wang, Ji Dong,Zhang, Yunchun.

[3]Composition and Physicochemical Properties of Dietary Fiber Extracted from Residues of 10 Varieties of Sweet Potato by a Sieving Method. Mei, Xin,Mu, Tai-Hua,Han, Jun-Juan.

[4]The Amino Acid Composition, Solubility And Emulsifying Properties Of Sweet Potato Protein. Mu, Tai-Hua,Tan, Sze-Sze,Xue, You-Lin.

[5]Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Wang, Ji Dong,Hou, Pengfu,Dong, Yue,Hui, Zhang,Ma, Hongbo,Xu, Xian Ju,Nin, Yunwang,Ai, Yuchun,Zhang, Yongchun,Zhu, Guo Peng.

[6]Chemotaxis of Ditylenchus destructor in response to different inorganic ions. Qi, Yonghong,Li, Xinhua,Ma, Juan,Chen, Shulong,Qi, Yonghong,Li, Minquan.

[7]Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in Northern China. Hou, Fuyun,Zhang, Liming,Xie, Beitao,Dong, Shunxu,Zhang, Haiyan,Li, Aixian,Wang, Qingmei.

[8]Expression of Arabidopsis HOMEODOMAIN GLABROUS 11 Enhances Tolerance to Drought Stress in Transgenic Sweet Potato Plants. Ruan, Long,Chen, Yihong,Zhang, Wei,Gao, Zhengliang,Chen, Lijuan,He, Jinling,Zhang, Yunhua.

[9]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

[10]Differences in transport of photosynthates between high-and low-yielding Ipomoea batatas L. varieties. Liu, H. J.,Shi, C. Y.,Wang, C. J.,Ren, G. B.,Jiang, Y.,Si, C. C.,Chai, S. S..

[11]Leaf Spot on Sweet Potato (Ipomoea batatas) Caused by Stemphylium solani, a New Disease in China. Chai, A-Li,Du, Gong-Fu,Shi, Yan-Xia,Xie, Xue-Wen,Li, Bao-Ju.

[12]Constructing modern industrial chain of sweet potato to develop sweet potato industry. Shen, Xueshan,Wang, Hong,Huang, Gang. 2011

[13]Calf Thymus DNA-Binding Ability Study of Anthocyanins from Purple Sweet Potatoes (Ipomoea batatas L.). Wang, Dan,Wang, Xirui,Zhang, Chao,Ma, Yue,Zhao, Xiaoyan,Wang, Xirui. 2011

[14]Accumulation and Gene Expression of Anthocyanin in Storage Roots of Purple-Freshed Sweet Potato [Ipomoea batatas (L.) Lam] Under Weak Light Conditions. Hou Fu-yun,Wang Qing-mei,Dong Shun-xu,Li Ai-xian,Zhang Hai-yan,Xie Bei-tao,Zhang Li-ming. 2010

[15]Suppression of reproductive characteristics of the invasive plant Mikania micrantha by sweet potato competition. Shen, Shicai,Xu, Gaofeng,Jin, Guimei,Liu, Shufang,Yang, Yanxian,Chen, Aidong,Zhang, Fudou,Clements, David Roy,Kato-Noguchi, Hisashi. 2016

[16]Effects of potassium fertilizer application on photosynthesis and seedling growth of sweet potato under drought stress. Zhu, L. D.,Shao, X. H.,Hou, M. M.,Zhu, L. D.,Shao, X. H.,Hou, M. M.,Zhu, L. D.,Zhang, Y. C.,Zhang, H.,Zhang, H.. 2012

[17]Changes in Volatile Compounds of Sweet Potato Tips During Fermentation. Cui Li,Liu Chun-quan,Li Da-jing,Cui Li,Liu Chun-quan,Li Da-jing. 2010

[18]Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain. Yu Han-qing,Li Yong,Zhou Na,Li Xiao-yu,Chappell, Adrian,Poesen, Jean. 2016

[19]Hydrogen Sulfide Promotes Root Organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Zhang, Hua,Wang, Yun,Yu, Wei,Peng, Wei-Yan,Fang, Fang,Wei, Zhao-Jun,Hu, Lan-Ying,Tang, Jun,Ma, Dai-Fu,Liu, Xiao-Ping. 2009

[20]Recovery of sporamin from naturally fermented sweet potato starch slurry by foam fractionation. Li, Peng-Gao,Mu, Tai-Hua,Li, Peng-Gao. 2012

作者其他论文 更多>>