In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in Medicago truncatula

文献类型: 外文期刊

第一作者: Zheng Xing-wei

作者: Zheng Xing-wei;Yi Deng-xia;Shao Lin-hui;Li Cong

作者机构:

关键词: R2R3-MYB;Medicago truncatula;gene family;stress response;function prediction

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 7 期

页码:

收录情况: SCI

摘要: The R2R3-MYB genes make up one of the largest transcription factor families in plants, and play regulatory roles in various biological processes such as development, metabolism and defense response. Although genome-wide analyses of this gene family have been conducted in several species, R2R3-MYB genes have not been systematically analyzed in Medicago truncatula, a sequenced model legume plant. Here, we performed a comprehensive, genome-wide computational analysis of the structural characteristics, phylogeny, functions and expression patterns of M. truncatula R2R3-MYB genes. DNA binding domains are highly conserved among the 155 putative MtR2R3-MYB proteins that we identified. Chromosomal location analysis revealed that these genes were distributed across all eight chromosomes. Results showed that the expansion of the MtR2R3-MYB family was mainly attributable to segmental duplication and tandem duplication. A comprehensive classification was performed based on phylogenetic analysis of the R2R3-MYB gene families in M. truncatula, Arabidopsis thaliana and other plant species. Evolutionary relationships within clades were supported by Glade-specific conserved motifs outside the MYB domain. Species-specific clades have been gained or lost during evolution, resulting in functional divergence. Also, tissue-specific expression patterns were investigated. The functions of stress response-related clades were further verified by the changes in transcript levels of representative R2R3-MYB genes upon treatment with abiotic and biotic stresses. This study is the first report on identification and characterization of R2R3-MYB gene family based on the genome of M. truncatula, and will facilitate functional analysis of this gene family in the future.

分类号:

  • 相关文献

[1]Genome-wide identification, expression profiling, and SSR marker development of the bZIP transcription factor family in Medicago truncatula. Zhang, Zhengshe,Liu, Wenxian,Liu, Zhipeng,Xie, Wengang,Wang, Yanrong,Qi, Xiao,Qi, Xiao.

[2]Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. Xiao, Xiaohu,Tang, Chaorong,Fang, Yongjun,Zhou, Binhui,Qi, Jiyan,Zhang, Yi,Xiao, Xiaohu,Zhou, Binhui,Zhang, Yi,Yang, Meng. 2014

[3]A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.). Qiao, Linyi,Chang, Zhijian,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Zhan, Haixian,Cui, Lei,Chang, Zhijian,Han, Xiao,Zhang, Lei,Zhane, Wenping,Mat, Jian,Luo, Peigao,Zhane, Wenping,Li, Xiaoyan. 2015

[4]Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Li, Chonghui,Ding, Ling,Huang, Mingzhong,Huang, Surong,Yang, Guangsui,Yin, Junmei,Qiu, Flan,Ding, Ling,Li, Chonghui,Huang, Mingzhong,Huang, Surong,Yang, Guangsui,Yin, Junmei.

[5]Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.). Li, Chonghui,Yang, Guangsui,Huang, Surong,Yin, Junmei,Qiu, Jian,Li, Chonghui,Yang, Guangsui,Huang, Surong,Yin, Junmei.

[6]Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower. Zhou, Hui,Peng, Qian,Owiti, Albert,Liao, Liao,Wang, Lu,Deng, Xianbao,Han, Yuepeng,Peng, Qian,Owiti, Albert,Zhao, Jianbo,Ren, Fei,Jiang, Quan,Liao, Liao,Wang, Lu,Deng, Xianbao,Han, Yuepeng. 2016

[7]R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. Chai, Guohua,Wang, Zengguang,Tang, Xianfeng,Yu, Li,Qi, Guang,Wang, Dian,Yan, Xiaofei,Zhou, Gongke,Kong, Yingzhen.

[8]Ectopic Expression of a Proteinase Inhibitor I4 (MtPiI4) Gene from Medicago truncatula Confers Plant Resistance to Pseudomonas syringae pv. Tomato DC3000. Sun, Di,Zhu, Can Can,Wang, Lei,Yang, Lu,Yang, Zhi Min,Chen, Jian,Hu, Liang Bin,Zhou, Zhao Sheng.

[9]Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Yang, Yanjun,Sun, Tao,Zeng, Houqing,Wang, Huizhong,Shen, Chenjia,Yue, Runqing,Zhang, Lei,Chen, Wei.

[10]Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Meng, Yingying,Hou, Yaling,Wang, Hui,Niu, Lifang,Lin, Hao,Ji, Ronghuan,Liu, Bin,Wen, Jiangqi.

[11]Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection. Shen, Chenjia,Sun, Tao,Yang, Yanjun,Wang, Huizhong,Yue, Runqing,Tie, Shuanggui,Bai, Youhuang,Feng, Rong,Wang, Xiaofei.

[12]Comparative sequence and expression analysis of tapetum specific male sterility related genes in Medicago truncatula. Shao, L. H.,Zheng, X. W.,Yi, D. X.,Li, C.. 2016

[13]Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice. Wu, Xiaohui,Gaffney, Bobby,Hunt, Arthur G.,Li, Qingshun Q.,Li, Qingshun Q.,Li, Qingshun Q.. 2014

[14]LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. Niu, Lifang,Lin, Hao,Zhang, Fei,Watira, Tezera W.,Tadege, Million,Niu, Lifang,Lin, Hao,Li, Guifen,Tang, Yuhong,Wen, Jiangqi,Mysore, Kirankumar S.,Ratet, Pascal.

[15]Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Xuan, Yun,Li, Hai Bo,Yang, Zhi Min,Zhou, Zhao Sheng,Xuan, Yun.

[16]Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp pekinensis). Wang, Fengde,Ding, Qian,Li, Jingjuan,Zhang, Yihui,Li, Huayin,Gao, Jianwei,Qiu, Nianwei. 2014

[17]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[18]Genome-wide Identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton. Min Mu,Xu-Ke Lu,Jun-Juan Wang,De-Long Wang,Zu-Jun Yin,Shuai Wang,Wei-Li Fan,Wu-Wei Ye. 2016

[19]Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. Weijie Li,Haihong Shang,Qun Ge,Changsong Zou,Juan Cai,Daojie Wang,Senmiao Fan,Zhen Zhang,Xiaoying Deng,Yunna Tan,Weiwu Song,Pengtao Li,Palanga Kibalou Koffi,Muhammad Jamshed,Quanwei Lu,Wankui Gong,Junwen Li,Yuzhen Shi,Tingting Chen,Juwu Gong,Aiying Liu,Youlu Yuan. 2016

[20]The MAPKKK Gene Family in Gossypium raimondii: Genome-Wide Identification, Classification and Expression Analysis. Zujun Yin,Junjuan Wang,Delong Wang,Weili Fan,Shuai Wang,Wuwei Ye. 2013

作者其他论文 更多>>