Identification of suitable reference genes in leaves and roots of rapeseed (Brassica napus L) under different nutrient deficiencies

文献类型: 外文期刊

第一作者: Han Pei-pei

作者: Han Pei-pei;Qin Lu;Li Yin-shui;Liao Xiang-sheng;Xu Zi-xian;Hu Xiao-jia;Xie Li-hua;Yu Chang-bing;Wu Yan-feng;Liao Xing

作者机构:

关键词: reference genes;rapeseed (Brassica napus L.);nutrient deficiency;leaves;roots

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 4 期

页码:

收录情况: SCI

摘要: Nutrient deficiency stresses often occur simultaneously in soil. Thus, it's necessary to investigate the mechanisms underlying plant responses to multiple stresses through identification of some key stress-responsive genes. Quantitative real-time PCR (qRT-PCR) is essential for detecting the expression of the interested genes, of which the selection of suitable reference genes is a crucial step before qRT-PCR. To date, reliable reference genes to normalize qRT-PCR data under different nutrient deficiencies have not been reported in plants. In this study, expression of ten candidate reference genes was detected in leaves and roots of rapeseed (Brassica napus L.) after implementing different nutrient deficiencies for 14 days. These candidate genes, included two traditionally used reference genes and eight genes selected from an RNA-Seq dataset. Two software packages (GeNorm, NormFinder) were employed to evaluate candidate gene stability. Results showed that VHA-E1 was the highest-ranked gene in leaves of nutrient-deficient rapeseed, while VHA-G1 and UBC21 were most stable in nutrient-deficient roots. When rapeseed leaves and roots were combined, UBC21, HTB1, VHA-G1 and ACT7 were most stable among all samples. To evaluate the stabilities of the highest-ranked genes, the relative expression of two target genes, BnTrx1;1 and BnPht1;3 were further determined. The results showed that the relative expression of BnTtx1;1 depended on reference gene selection, suggesting that it's necessary to evaluate the stability of reference gene prior to qRT-PCR. This study provides suitable reference genes for gene expression analysis of rapeseed responses to different nutrient deficiencies, which is essential for elucidation of mechanisms underlying rapeseed responses to multiple nutrient deficiency stresses.

分类号:

  • 相关文献

[1]The Transcriptome of Brassica napus L. Roots under Waterlogging at the Seedling Stage. Zou, Xiling,Tan, Xiaoyu,Hu, Chengwei,Zeng, Liu,Lu, Guangyuan,Fu, Guiping,Cheng, Yong,Zhang, Xuekun. 2013

[2]Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.. Zou Xi-ling,Zeng Liu,Lu Guang-yuan,Cheng yong,Xu Jin-song,Zhang Xue-kun. 2015

[3]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[4]Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L.. Wu, Jian,Schat, Henk,Sun, Rifei,Koornneef, Maarten,Wang, Xiaowu,Aarts, Mark G. M..

[5]Molecular cloning, characterization and expression analysis of PtrHOS1, a novel gene of cold responses from trifoliate orange [Poncirus trifoliata (L.) Raf.]. Xu, Miao,Sun, Zhong-Hai,Liu, De-Chun,He, Li-Gang,Wang, Hui-Liang,Sun, Zhong-Hai.

[6]Characterization of a New Strain of Capsicum chlorosis virus from Peanut (Arachis hypogaea L.) in China. Chen, K.,Xu, Z.,Yan, L.,Wang, G..

[7]Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.). Qin, Lu,Han, Peipei,Li, Yinshui,Hu, Xiaojia,Xie, Lihua,Liao, Xing,Chen, Liyu,Liao, Hong,Walk, Thomas C.. 2017

[8]Analysis of genetic effects and heritabilities for linoleic and alpha-linolenic acid content of Brassica napus L. across Chinese environments. Zhang, HZ,Shi, CH,Wu, JG,Ren, YL,Li, CT,Zhang, DQ,Zhang, YF. 2004

[9]Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Zeng Liu,Li Jing-jing,Lu Guang-yuan,Fu Gui-ping,Zhang Xue-kun,Zou Xi-ling,Cheng Yong,Cai Jun-song,Li Jing-jing,Li Chun-sheng,Ma Hai-qing,Liu Qing-yun. 2018

[10]A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). Li, Na,Shi, Jiaqin,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2014

[11]Biomass-based rapeseed (Brassica napus L.) stem and rachis geometric parameter model. Liu, Yan,Zhang, Weixin,Chen, Weitao,Cao, Hongxin,Ge, Daokuo,Feng, Chunhuan,Song, Chuwei,Ge, Sijun,Liu, Yongxia. 2016

[12]Nitrogen Revising of Rapeseed (Brassica napus L.) Phenology and Leaf Number Models. Liu, Yan,Zhang, Wenyu,Ge, Daokuo,Chen, Yuli,Zhang, Weixin,Fu, Kunya,Feng, Chunhuan,Zhu, Yeping,Yue, Yanbin,Liu, Yongxia,Sun, Jinying,Zhang, Zhiyou,Liu, Na,Yang, Taiming. 2015

[13]Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.). Zhang, Wenyu,Zhang, Weixin,Ge, Daokuo,Cao, Hongxin,Liu, Yan,Fu, Kunya,Feng, Chunhuan,Chen, Weitao,Song, Chuwei. 2016

[14]Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Yang, Chang Geng,Tian, Juan,Liu, Wei,Wu, Fan,Jiang, Ming,Wen, Hua,Wang, Xian Li.

[15]Validation of reference genes for RT-qPCR normalization in Iris. lactea var. chinensis leaves under different experimental conditions. Gu, Chun-Sun,Lu, Xiao-Qing,Huang, Su-Zhen,Liu, Liang-Qin,Zhu, Xu-Dong,Deng, Yan-Ming.

[16]Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Xu, Yuanyuan,Li, Hui,Li, Xiaogang,Lin, Jing,Wang, Zhonghua,Yang, Qingsong,Chang, Youhong.

[17]Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Bin, Wang Shu,Wei, Liu Ke,Ping, Diao Wei,Li, Zhi,Wei, Ge,Bing, Liu Jin,Gui, Pan Bao,Jian, Wan Hong,Feng, Chen Jin,Wei, Liu Ke.

[18]Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree. Long, Xiangyu,He, Bin,Gao, Xinsheng,Qin, Yunxia,Yang, Jianghua,Fang, Yongjun,Qi, Jiyan,Tang, Chaorong,He, Bin.

[19]Candidate Reference Genes Selection and Application for RT-qPCR Analysis in Kenaf with Cytoplasmic Male Sterility Background. Chen, Peng,Khan, Aziz,Chen, Lihong,Liao, Xiaofang,Kong, Xiangjun,Zhou, Ruiyang,Zhao, Yanhong,Liu, Dongmei. 2017

[20]Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp by quantitative real-time RT-PCR. Cao, Shaona,Zhang, Xiaowen,Ye, Naihao,Fan, Xiao,Xu, Dong,Cao, Shaona,Wang, Yitao,Wang, Wenqi,Liang, Chengwei. 2012

作者其他论文 更多>>