Simple nonlinear model for the relationship between maize yield and cumulative water amount

文献类型: 外文期刊

第一作者: Liu Cheng

作者: Liu Cheng;Yang Xiao-hong;Li Jian-sheng;Liu Cheng;Sun Bao-cheng;Tang Huai-jun;Xie Xiao-qing;Wang Tian-yu;Li Yu;Zhang Deng-feng;Shi Yun-su;Song Yan-chun

作者机构:

关键词: yield;water;model;maize;water sensitivity;drought tolerance

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 4 期

页码:

收录情况: SCI

摘要: Both the additive and multiplicative models of crop yield and water supply are polynomial equations, and the number of parameters increases linearly when the growing period is specified. However, interactions among multiple parameters occasionally lead to unreasonable estimations of certain parameters, which were water sensitivity coefficients but with negative value. Additionally, evapotranspiration must be measured as a model input. To facilitate the application of these models and overcome the aforementioned shortcomings, a simple model with only three parameters was derived in this paper based on certain general quantitative relations of crop yield.(Y) and water supply (W). The new model, Y/Y-m W-k/(W-k+W-h(k))wa fits an S or a saturated curve of crop yield with the cumulative amount of water. Three parameters are related to biological factors: the yield potential (Y-m), the water requirement to achieve half of the yield potential (half-yield water requirement, w(h)), and the water sensitivity coefficient (k). The model was validated with data from 24 maize lines obtained in the present study and 17 maize hybrids published by other authors. The results showed that the model was well fit to the data, and the normal root of the mean square error (NRMSE) values were 2.8 to 17.8% (average 7.2%) for the 24 maize lines and 2.7 to 12.7% (average 7.4%) for the 17 maize varieties. According to the present model, the maize water-sensitive stages in descending order were pollen shedding and silking, tasselling, jointing, initial grain filling, germination, middle grain filling, late grain filling, and end of grain filling. This sequence was consistent with actual observations in the maize field. The present model may be easily used to analyse the water use efficiency and drought tolerance of maize at specific stages.

分类号:

  • 相关文献

[1]Applicability of an Agro-hydrological Model (SMCR_N) in Simulating the Yield and Nitrate Dynamics of Eggplant in North China Plain. Dong, Yiwei,Li, Qiaozhen,Fang, Fuli,Li, Yuzhong,Xu, Chunying,Dong, Yiwei,Zhu, Dazhou. 2012

[2]Root distribution and interactions between intercropped species. Li, L,Sun, JH,Zhang, FS,Guo, TW,Bao, XG,Smith, FA,Smith, SE.

[3]QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Li, Xingmao,Xia, Xianchun,Xiao, Yonggui,He, Zhonghu,Wang, Desen,Chen, Xinmin,Li, Xingmao,He, Zhonghu,Trethowan, Richard,Wang, Huajun.

[4]Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants. He, Chunmei,Liu, Qiang,Liu, Tieshan,Liu, Chunxiao,Wang, Liming,Zhang, Juren,He, Ying,Zhang, Juren.

[5]Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Li, Tao,Sun, Yuqing,Xu, Lijiiao,Hu, Yajun,Hao, Zhipeng,Zhang, Xin,Li, Hong,Chen, Baodong,Ruan, Yuan,Hu, Yajun,Wang, Youshan,Yang, Liguo.

[6]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[7]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[8]Haplotypic Structure and Allelic Variation of rab17, an ABA-Responsive Gene, in a Mini Core Set of Chinese Diversified Maize Inbred Lines. Yu Yong-tao,Wang Rong-huan,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Yu Yong-tao. 2010

[9]Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Liu, Ya,Subhash, Chander,Yan, Jianbin,Li, Jiansheng,Liu, Ya,Zhao, Jiuran,Song, Chunpeng.

[10]Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model. Zhang, Yitao,Wang, Hongyuan,Liu, Shen,Lei, Qiuliang,Zhai, Limei,Liu, Hongbin,Liu, Jian,He, Jianqiang,Ren, Tianzhi.

[11]Soil application of zinc fertilizer could achieve high yield and high grain zinc concentration in maize. Liu, Dun-Yi,Zhang, Wei,Yan, Peng,Chen, Xin-Ping,Zhang, Fu-Suo,Zou, Chun-Qin,Yan, Peng.

[12]MAIZE GROWTH, YIELD FORMATION AND WATER-NITROGEN USAGE IN RESPONSE TO VARIED IRRIGATION AND NITROGEN SUPPLY UNDER SEMI-ARID CLIMATE. Ashraf, Umair,Pan, Shenggang,Tang, Xiangru,Ashraf, Umair,Pan, Shenggang,Tang, Xiangru,Salim, Mazhar Noor,Sher, Alam,Khan, Aqil,Sabir, Sabeeh-ur-Rasool. 2016

[13]Relationship between population competitive intensity and yield in maize cultivars. Zhai Li-chao,Xie Rui-zhi,Li Shao-kun,Fan Pan-pan,Zhai Li-chao. 2017

[14]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[15]Production of Sugar Beet and Maize as Energy Crops in Saline Alkali Soil. Geng, Gui,Yu, Lihua,Song, Fuqiang,Yang, Fengshan,Zhao, Huijie,Geng, Gui,Yu, Lihua. 2013

[16]Analysis of the decrease of center pivot sprinkling system uniformity and its impact on maize yield. Li Lianhao,Li Lianhao,Zhang Xinyue,Qiao Xiaodong,Liu Guiming. 2016

[17]Effects of Environment Variables on Maize Yield and Ear Characters. Yu, Jilin,Qi, Hua,Nie, Linxue,Liu, Ming,Lin, Zhiqiang,Gao, Mingchao,Zhang, Weijian,Zheng, Hongbing. 2013

[18]Correlation Analysis of Yield and Photosynthetic Traits with Simple Repeat Sequence (SSR) Markers in Maize. Li, Weizhong,Zhao, Dongxu,Wei, Shi,Li, Jing,Li, Weizhong,Wang, Maoqing,Hu, Guohua,Liang, Chunbo. 2017

[19]Photosynthetically active radiation determining yields for an intercrop of maize with cabbage. Wang, Qingsuo,Sun, Dongbao,Hao, Hong,Zhao, Xuejiao,Hao, Weiping,Liu, Qiong.

[20]Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Zhang, Xubo,Xu, Minggang,Sun, Nan,Zhang, Xubo,Wu, Lianhai,Xiong, Wei,Huang, Shaomin.

作者其他论文 更多>>