Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.)

文献类型: 外文期刊

第一作者: Wang, Hong

作者: Wang, Hong;Wang, Junhong;Ye, Yutong;Guo, Xinbo;Chen, Gu;Fu, Xiong;Liu, Rui Hai;Qiu, Caisheng;Wang, Yufu;Guo, Xinbo;Li, Tong;Liu, Rui Hai

作者机构:

关键词: Fiber flaxseed;Oil flaxseed;Phenolics;Flavonoids;Cellular antioxidant activity

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN: 0308-8146

年卷期: 2017 年 214 卷

页码:

收录情况: SCI

摘要: Flaxseed (Linum usitatissimum L.) is a rich source of nutritive and bioactive compounds. The research evaluated the disparity in phytochemical profiles along with total and cellular antioxidant activities between oil and fiber flaxseeds. There were significant differences in total phenolics, total flavonoids and antioxidant activities among the six cultivars of fiber and oil flaxseed, respectively. Four phytochemical compounds including caffeic acid, p-coumaric acid and ferulic acid, and secoisolariciresinol diglucoside (SDG) were identified and quantified in the cultivars of oil and fiber flaxseed by HPLC analysis. Notably, the average of total phenolic and flavonoid contents, along with total antioxidant activities between fiber and oil flaxseeds were not different significantly; even the cellular antioxidant activity of fiber flaxseed was superior to oil flaxseed. These results suggest that fiber flaxseeds would be valuable candidates as functional products and dietary supplements production owing to the higher bioactive values as well as oil flaxseeds. (C) 2016 Elsevier Ltd. All rights reserved.

分类号:

  • 相关文献

[1]Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Liu, Lei,Guo, Jinjie,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Guo, Jinxin,Zhang, Mingwei.

[2]Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp. Su, Dongxiao,Ti, Huihui,Zhang, Ruifen,Zhang, Mingwei,Wei, Zhengchen,Deng, Yuanyuan,Guo, Jinxin,Su, Dongxiao.

[3]Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Huang, Wu-yang,Li, Chun-yang,Zhang, Hong-cheng,Liu, Wen-xu. 2012

[4]Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. Xu, Hong-xia,Chen, Jun-wei. 2011

[5]Effect of germination on vitamin C, phenolic compounds and antioxidant activity in flaxseed (Linum usitatissimum L.). Wang, Hong,Abbasi, Arshad M.,Chen, Gu,You, Lijun,Fu, Xiong,Guo, Xinbo,Qiu, Caisheng,Wang, Yufu,Li, Tong,Guo, Xinbo,Liu, Rui Hai.

[6]Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Liu, Fengyuan,Hu, Xiaodan,Guo, Xinbo,Chang, Xiaoxiao,Brennan, Charles S.,Guo, Xinbo.

[7]Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Ti, Huihui,Li, Qing,Zhang, Ruifen,Zhang, Mingwei,Deng, Yuanyuan,Wei, Zhencheng,Chi, Jianwei,Zhang, Yan.

[8]Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. Zhang, Ming Wei,Liu, Rui Hai,Zhang, Ming Wei,Zhang, Rui Feng,Zhang, Fang Xuan,Liu, Rui Hai.

[9]Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Ti, Huihui,Zhang, Ruifen,Zhang, Mingwei,Li, Qing,Wei, Zhencheng,Zhang, Yan,Tang, Xiaojun,Deng, Yuanyuan,Liu, Lei,Ma, Yongxuan.

[10]Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Ti, Huihui,Zhang, Ruifen,Li, Qing,Wei, Zhencheng,Zhang, Mingwei.

[11]Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Zhang, Ruifen,Huang, Long,Deng, Yuanyuan,Chi, Jianwei,Zhang, Yan,Wei, Zhencheng,Zhang, Mingwei,Zhang, Ruifen. 2017

[12]Adaptive functions of defensive plant phenolics and a non-linear bee response to nectar components. Liu, F.,Chen, J.,Chai, J.,Zhang, X.,Bai, X.,He, D.,Roubik, D. W.. 2007

[13]Pollen phenolics and regulation of pollen foraging in honeybee colony. Liu, FL,Zhang, XW,Chai, JP,Yang, DR. 2006

[14]Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Zou, Yuxiao,Sun, Yuanming,Zou, Yuxiao,Liao, Shentai,Shen, Weizhi,Liu, Fan,Tang, Cuiming,Chen, Chung-Yen Oliver. 2012

[15]Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Zhang, Ruifen,Khan, Sher Ali,Chi, Jianwei,Wei, Zhencheng,Zhang, Yan,Deng, Yuanyuan,Liu, Lei,Zhang, Mingwei. 2018

[16]Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. Zhao, Guanghe,Zhang, Ruifen,Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Tang, Xiaojun,Wei, Zhencheng,Zhang, Mingwei. 2018

[17]Reinforcement of bee-plant interaction by phenolics in food. Liu, FL,Fu, WJ,Yang, DR,Peng, YQ,Zhang, XW,He, JZ. 2004

[18]Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars. Li, Wu,Liang, Hong,Zhang, Ming-Wei,Zhang, Rui-Fen,Deng, Yuan-Yuan,Wei, Zhen-Cheng,Zhang, Yan,Tang, Xiao-Jun. 2012

[19]Quality evaluation of snow lotus (Saussurea): quantitative chemical analysis and antioxidant activity assessment. Qiu, Jian,Chen, Fudong,Zhao, Dexiu,Qiu, Jian,Chen, Fudong,Li, Chonghui,Zhao, Qiao,Xue, Xiaofeng,Bolat, Nuer,Wang, Xiaojun,Baima, Yuzhen,Ma, Fengshan.

[20]Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation. Xiao, Juan,Zhang, Ruifen,Liu, Lei,Huang, Fei,Deng, Yuanyuan,Ma, Yongxuan,Wei, Zhencheng,Tang, Xiaojun,Zhang, Mingwei,Zhou, Qiuyun.

作者其他论文 更多>>