Exploring adsorption capacity and mechanisms involved in cadmium removal from aqueous solutions by biochar derived from euhalophyte

文献类型: 外文期刊

第一作者: Ge, Shaoqing

作者: Ge, Shaoqing;Zhao, Shuai;Wang, Lei;Zhao, Zhenyong;Wang, Shoule;Tian, Changyan;Wang, Shoule

作者机构:

期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.6; 五年影响因子:4.9 )

ISSN: 2045-2322

年卷期: 2024 年 14 卷 1 期

页码:

收录情况: SCI

摘要: Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with inherent metal adsorption properties. This study focused on biochar derived from the euhalophyte Salicornia europaea and aimed to investigate its Cd adsorption capacity through adsorption kinetics and isotherm experiments. The results demonstrated that S. europaea biochar exhibited a high specific surface area, substantial base cation content, and a low negative surface charge, making it a highly effective adsorbent for Cd. The adsorption data fit well with the Langmuir isotherm model, revealing a maximum adsorption capacity of 108.54 mg g-1 at 25 degrees C. The adsorption process involved both surface adsorption and intraparticle diffusion. The Cd adsorption mechanism on the biochar encompassed precipitation, ion exchange, functional group complexation, and cation-pi interactions. Notably, the precipitation of Cd2+ with CO32- in the biochar played a dominant role, accounting for 73.7% of the overall removal mechanism. These findings underscore the potential of euhalophytes such as S. europaea as a promising solution for remediating Cd contamination in aquatic environments.

分类号:

  • 相关文献
作者其他论文 更多>>