Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum x Gossypium barbadense
文献类型: 外文期刊
第一作者: Yuzhen Shi
作者: Yuzhen Shi;Baocai Zhang;Aiying Liu;Wentan Li;Junwen Li;Quanwei Lu;Zhen Zhang;Shaoqi Li;Wankui Gong;Haihong Shang;Juwu Gong;Tingting Chen;Qun Ge;Tao Wang;Heqin Zhu;Zhi Liu;Youlu Yuan
作者机构:
关键词: Cotton;Verticillium wilt (VW);Quantitative trait loci (QTL);Interspecific backcross population
期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )
ISSN: 1471-2164
年卷期: 2016 年 17 卷
页码:
收录情况: SCI
摘要: Background: Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. Results: In the present study, BC1F1, BC1S1, and BC2F1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC1F1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC2F1 in the artificial disease nursery and one date of BC1S1 and BC2F1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. Conclusions: These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant cotton. It may also lay an important foundation for gene cloning and further molecular design breeding for the entire cotton genome.
分类号:
- 相关文献
作者其他论文 更多>>
-
Co-Expression Network Analysis and Hub Gene Selection for High-Quality Fiber in Upland Cotton (Gossypium hirsutum) Using RNA Sequencing Analysis
作者:Xianyan Zou;Aiying Liu;Zhen Zhang;Qun Ge;Senmiao Fan;Wankui Gong;Junwen Li;Juwu Gong;Yuzhen Shi;Baoming Tian;Yanling Wang;Ruixian Liu;Kang Lei;Qi Zhang;Xiao Jiang;Yulong Feng;Shuya Zhang;Tingting Jia;Lipeng Zhang;Youlu Yuan;Haihong Shang
关键词:Gossypium hirsutum; fiber development; transcriptomic analysis; DEGs; WGCNA
-
Genome-wide identification and analysis of the evolution and expression patterns of the GATA transcription factors in three species of Gossypium genus
作者:Zhen Zhang;Xianyan Zou;Zhen Huang;Senmiao Fan;Ge Qun;Aiying Liu;Juwu Gong;Junwen Li;Wankui Gong;Yuzhen Shi;Liqiang Fan;Zhibin Zhang;Ruixian Liu;Xiao Jiang;Kang Lei;Haihong Shang;Aixia Xu;Youlu Yuan
关键词:Gossypium; GATA TFs; Gene and protein structure; Phylogeny; Expression pattern
-
An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton
作者:Hong Chen;Hao Feng;Xueyan Zhang;Chaojun Zhang;Tao Wang;Jiangli Dong
关键词:Gossypium hirsutum Linn.; HISTONE MONOUBIQUITINATION 2 (HUB2); drought; transgenic plants; histone monoubiquitination; histone methylation
-
Identification of TPX2 Gene Family in Upland Cotton and its Functional Analysis in Cotton Fiber Development
作者:Kang Lei;Aiying Liu;Senmiao Fan;Huo Peng;Xianyan Zou;Zhang Zhen;Jinyong Huang;Liqiang Fan;Zhibin Zhang;Xiaoying Deng;Qun Ge;Wankui Gong;Junwen Li;Juwu Gong;Yuzhen Shi;Xiao Jiang;Shuya Zhang;Tingting Jia;Lipeng Zhang;Youlu Yuan;Haihong Shang
关键词:upland cotton; Xklp2 (TPX2) gene family; gene expression; MAP; protein interactions
-
Functional analysis of the GbDWARF14 gene associated with branching development in cotton
作者:Ping Wang;Sai Zhang;Jing Qiao;Quan Sun;Qian Shi;Chaowei Cai;Jianchuan Mo;Zongyan Chu;Youlu Yuan;Xiongming Du;Yuchen Miao;Xiao Zhang;Yingfan Cai
关键词:GbD14; Cotton; Branch; Hormone; Strigolactone; Gene function
-
Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G-hirsutum x G-barbadense in response to Verticillium dahliae infection
作者:Peng-tao Li;Md. Harun or Rashid;Ting-ting Chen;Quan-wei Lu;Qun Ge;Wan-kui Gong;Ai-ying Liu;Ju-wu Gong;Hai-hong Shang;Xiao-ying Deng;Jun-wen Li;Shao-qi Li;Xiang-hui Xiao;Rui-xian Liu;Qi Zhang;Li Duan;Xian-yan Zou;Zhen Zhang;Xiao Jiang;Ya Zhang;Ren-hai Peng;Yu-zhen Shi;You-lu Yuan
关键词:Gossypium hirsutum; Chromosome segment substitution lines; Verticillium wilt; Biochemical tests; Transcriptome analysis
-
Genome-Wide Identification and Expression Analysis of the Metacaspase Gene Family in Gossypium Species
作者:Senmiao Fan;Aiying Liu;Zhen Zhang;Xianyan Zou;Xiao Jiang;Jinyong Huang;Liqiang Fan;Zhibin Zhang;Xiaoying Deng;Qun Ge;Wankui Gong;Junwen Li;Juwu Gong;Yuzhen Shi;Kang Lei;Shuya Zhang;Tingting Jia;Lipeng Zhang;Youlu Yuan;Haihong Shang
关键词:cotton; metacaspase; evolution; expression patterns