De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress

文献类型: 外文期刊

第一作者: Fu, Juanjuan

作者: Fu, Juanjuan;Hu, Tianming;Yang, Peizhi;Miao, Yanjun;Shao, Linhui

作者机构:

关键词: Cold stress;Co-expression;Dehydrin;Species-specificity;Transcriptome

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2016 年 17 卷

页码:

收录情况: SCI

摘要: Background: Elymus nutans Griseb., is an important alpine perennial forage of Pooideae subfamily with strong inherited cold tolerance. To get a deeper insight into its molecular mechanisms of cold tolerance, we compared the transcriptome profiling by RNA-Seq in two genotypes of Elymus nutans Griseb. the tolerant Damxung (DX) and the sensitive Gannan (GN) under cold stress. Results: The new E. nutans transcriptomes were assembled and comprised 200,520 and 181,331 transcripts in DX and GN, respectively. Among them, 5436 and 4323 genes were differentially expressed in DX and GN, with 170 genes commonly expressed over time. Early cold responses involved numerous genes encoding transcription factors and signal transduction in both genotypes. The AP2/EREBP famliy of transcription factors was predominantly expressed in both genotypes. The most significant transcriptomic changes in the later phases of cold stress are associated with oxidative stress, primary and secondary metabolism, and photosynthesis. Higher fold expressions of fructan, trehalose, and alpha-linolenic acid metabolism-related genes were detected in DX. The DX-specific dehydrins may be promising candidates to improve cold tolerance. Twenty-six hub genes played a central role in both genotypes under cold stress. qRT-PCR analysis of 26 genes confirmed the RNA-Seq results. Conclusions: The stronger transcriptional differentiation during cold stress in DX explains its better cold tolerance compared to GN. The identified fructan biosynthesis, alpha-linolenic acid metabolism, and DX-specific dehydrin-related genes may provide genetic resources for the improvement of cold-tolerant characters in DX. Our findings provide important clues for further studies of the molecular mechanisms underlying cold stress responses in plants.

分类号:

  • 相关文献

[1]Transcriptome Analysis of Cucumber Roots Reveals Key Cold-Resistance Genes Induced by AM Fungi. Ma, Jun,Sun, Chao,Bai, Longqiang,Dong, Rongrong,Yan, Yan,Yu, Xianchang,He, Chaoxing,Li, Yansu,Ma, Jun,Zou, Zhirong,Sun, Chao. 2018

[2]Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. Xiang, Shipeng,Zhu, Lieshu,Zhu, Xianxin,Xiang, Shipeng,Zhou, Qingming,Zhu, Lieshu,Zhan, Youguo,Zhu, Mingdong,Yin, Hanqi,Zhang, Xianwen,Liu, Zhi.

[3]Expression of a SK2-type dehydrin gene from Populus euphratica in a Populus tremula x Populus alba hybrid increased drought tolerance. Ma, Yan,Wang, Yanzhen,Wang, Hongzhi,Li, Ruifen,Wei, Jianhua. 2011

[4]Classification and expression diversification of wheat dehydrin genes. Wang, Yuezhi,Xu, Haibin,Zhu, Huilan,Tao, Ye,Zhang, Guangxiang,Zhang, Lixia,Zhang, Caiqin,Zhang, Zhengzhi,Ma, Zhengqiang,Wang, Yuezhi,Xu, Haibin,Zhu, Huilan,Tao, Ye,Zhang, Guangxiang,Zhang, Lixia,Zhang, Caiqin,Zhang, Zhengzhi,Ma, Zhengqiang,Wang, Yuezhi. 2014

[5]Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Liu, Hui,Yu, Chuying,Li, Hanxia,Ouyang, Bo,Wang, Taotao,Zhang, Junhong,Wang, Xin,Ye, Zhibiao,Liu, Hui.

[6]Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Sun, Jie,Nie, Lizhen,Sun, Guoqin,Guo, Jiufeng,Liu, Yongzhi.

[7]Construction and co-expression of polycistronic plasmids encoding bio-degumming-related enzymes to improve the degumming process of ramie fibres. Cheng, Yi,Liu, Zhengchu,Zeng, Jie,Cheng, Lifeng,Yan, Zhun,Duan, Shengwen,Feng, Xiangyuan,Zheng, Ke,Zheng, Xia,Wang, Ruijun.

[8]Isolation and characterization of a novel chalcone synthase gene family from mulberry. Wang, Chuanhong,Zhi, Shuang,Liu, Changying,Xu, Fengxiang,Zhao, Aichun,Wang, Xiling,Tang, Xing,Yu, Maode,Wang, Chuanhong,Zhi, Shuang,Liu, Changying,Xu, Fengxiang,Zhao, Aichun,Wang, Xiling,Tang, Xing,Yu, Maode,Li, Zhengang,Huang, Ping.

[9]The Establishment of Double-Transgenic Mice that Co-Express the appA and MxA Genes Mediated by Type A Spermatogonia In vivo. Bai Li-jing,Ju Hui-ming,Mu Yu-Lian,Yang Shu-lin,Ren Hong-yan,Ao Hong,Li Kui,Bai Li-jing,Wang Chu-duan,Ju Hui-ming. 2014

[10]Constructing a comprehensive gene co-expression based interactome in Bos taurus. Chen, Yan,Zhang, Wengang,Xu, Ling,Gao, Xue,Zhang, Lupei,Gao, Huijiang,Xu, Lingyang,Li, Junya,Liu, Yining,Du, Min,Zhao, Min. 2017

[11]Construction and Validation of a Dual-Transgene Vector System for Stable Transformation in Plants. He, Zhimin,He, Reqing,Yan, Jindong,Zhong, Ming,Zhao, Xiaoying,Liu, Xuanming,He, Zhimin,Wang, Xu,Liu, Bin,Bian, Mingdi,Liu, Xuanming. 2016

[12]Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development. Zhu, Ming,Jiang, Haiyang,Zhu, Ming,Zhang, Min,Xing, Lijuan,Li, Wenzong,Wang, Lei,Xu, Miaoyun. 2017

[13]Enhanced soluble production of cholera toxin B subunit in Escherichia coil by co-expression of SKP chaperones. Zhang, Yuanpeng,Qiao, Xuwen,Yu, Xiaoming,Chen, Jin,Hou, Liting,Bi, Zhixiang,Zheng, Qisheng,Hou, Jibo,Zhang, Yuanpeng,Qiao, Xuwen,Yu, Xiaoming,Chen, Jin,Hou, Liting,Bi, Zhixiang,Zheng, Qisheng,Hou, Jibo. 2017

[14]Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Behd) and Co-expressin Analysis Related to Salt and Osmotic Stress Responses. Tang, Jun,Lin, Jing,Chang, Youhong,Tang, Jun,Cheng, Zong-Ming. 2016

[15]Characterization of a novel lipase and its specific foldase from Acinetobacter sp XMZ-26. Zheng, Xiaomei,Wu, Ningfeng,Fan, Yunliu. 2012

[16]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[17]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[18]Protein Kinase LTRPK1 Influences Cold Adaptation and Microtubule Stability in Rice. Liu, Wei,Fang, Xiaoliang,Wang, Qingguo,Li, Zhen,Yao, Fangyin,Hou, Lei,Ji, Shuxia,Dai, Shaojun,Fang, Xiaoliang. 2013

[19]Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. Wang, Jiangshan,Cui, Feng,Hou, Lei,Zhao, Shuzhen,Xia, Han,Qiu, Jingjing,Li, Tingting,Zhang, Ye,Wang, Xingjun,Zhao, Chuanzhi,Wang, Jiangshan,Zhang, Quan,Qiu, Jingjing,Wang, Xingjun,Zhao, Chuanzhi. 2017

[20]The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress. Cheng, Chang-Hong,Liang, Hai-Yan,Luo, Sheng-Wei,Wang, An-Li,Ye, Chao-Xia. 2018

作者其他论文 更多>>