Characterization of the Verticillium dahliae Exoproteome Involves in Pathogenicity from Cotton-Containing Medium

文献类型: 外文期刊

第一作者: Chen, Jie-Yin

作者: Chen, Jie-Yin;Xiao, Hong-Li;Gui, Yue-Jing;Zhang, Dan-Dan;Li, Lei;Bao, Yu-Ming;Dai, Xiao-Feng

作者机构:

关键词: Verticillium dahliae;exoproteome;CAZymes;plant cell wall degradation enzyme;pectinases

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. Previous studies have shown that the exoproteome of V. dahliae plays a significant role in this pathogenic process, but the components and mechanisms that underlie this remain unclear. In this study, the exoproteome of V. dahliae was induced in a cotton containing C'zapek-Dox (CCD) medium and quantified using the high-throughput isobaric tag technique for relative and absolute quantification (iTRAQ). Results showed that the abundance of 271 secreted proteins was affected by the CCD medium, of which 172 contain typical signal peptides generally produced by the Golgi/endoplasmic reticulum (ER). These enhanced abundance proteins were predominantly enriched in carbohydrate hydrolases; 126 were classified as carbohydrate-active (CAZymes) and almost all were significantly up-regulated in the CCD medium. Results showed that CAZymes proteins 30 and 22 participate in pectin and cellulose degradation pathways, corresponding with the transcription levels of several genes encoded plant cell wall degradation enzyme activated significantly during cotton infection. In addition, targeted deletion of two pectin lyase genes (VdPL3. 1 and VdPL3.3) impaired wilt virulence to cotton. This study demonstrates that the V. dahliae exoproteome plays a crucial role in the development of symptoms of wilting and necrosis, predominantly via the pathogenic mechanisms of plant cell wall degradation as part of host plant infection.

分类号:

  • 相关文献

[1]Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Dong, HZ,Li, WJ,Zhang, DM,Tang, W. 2003

[2]Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation. Jun Chu,Wei-Fang Li,Wang Cheng,Mo Lu,Ke-Hai Zhou,He-Qin Zhu,Fu-Guang Li,Cong-Zhao Zhou.

[3]The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. Xiao-Xiao Cheng,Li, Zhi-Fang,Zhu, He-Qin,Li-Hong Zhao,Steven J. Klosterman,Hong-Jie Feng,Zi-Li Feng,Feng Wei,Yong-Qiang Shi,Zhi-Fang Li,He-Qin Zhu.

[4]Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton. Zhang, Ya-Lin,Li, Zhi-Fang,Feng, Zi-Li,Feng, Hong-Jie,Zhao, Li-Hong,Shi, Yong-Qiang,Hu, Xiao-Ping,Zhu, He-Qin.

[5]Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. Quan Sun,Huaizhong Jiang,Xiaoyan Zhu,Weina Wang,Xiaohong He,Yuzhen Shi,Youlu Yuan,Xiongming Du,Yingfan Cai. 2013

[6]Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton. Li, Fangfang,Qian, Shasha,Zhou, Xueping,Gu, Zhouhang,Wang, Qian,Ye, Fei,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Wang, Jinyan,Zhang, Baolong,Ding, Bo,Wang, Guoliang,Zhou, Xueping. 2017

[7]Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. Rehman, Latifur,Su, Xiaofeng,Guo, Huiming,Qi, Xiliang,Cheng, Hongmei. 2016

[8]Effect of temperature on conidial germination, mycelial growth and aggressiveness of the defoliating and nondefoliating pathotypes of Verticillium dahliae from cotton in China. Xu, Fei,Yang, Long,Zhang, Jing,Li, Guoqing,Xu, Fei,Yang, Long,Zhang, Jing,Li, Guoqing,Xu, Fei,Guo, Xiaoping,Zhang, Xianlong. 2012

[9]Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Liu, Zhipeng,Liu, Wenxian,Zeng, Hongmei,Yang, Xiufen,Guo, Lihua,Qiu, Dewen. 2014

[10]Comparative expression analysis in susceptible and resistant Gossypium hirsutum responding to Verticillium dahliae infection by cDNA-AFLP. Wang, Sheng-Zheng,Liu, Kai,Si, Ning,Qi, Fang-Jun,Jian, Gui-Liang.

[11]Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection. Jian, Gui-Liang,Jiang, Teng-Fei,Wang, Sheng-Zheng,Qi, Fang-Jun,Xu, Shi-Chang.

[12]Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Yang, Liu,Mu, Xiaoying,Liu, Chao,Cai, Jinghui,Shi, Ke,Zhu, Wenjiao,Yang, Qing,Yang, Liu. 2015

[13]The genes involved in the protective effects of phytohormones in response to Verticillium dahliae infection in Gossypium hirsutum. Zhang, Wenwei,Jian, Guiliang,Qi, Fangjun,Si, Ning.

[14]Generation of transcriptome profiling and gene functional analysis in Gossypium hirsutum upon Verticillium dahliae infection. Zhang, Huachong,Qi, Fangjun,Jian, Guiliang.

[15]Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens. Tharayil, N.,Gerik, J.,Rosen, C.,Kinkel, L.,Cao, A..

[16]Expression of alfalfa antifungal peptide gene and enhance of resistance to Verticillium dahliae in upland cotton. Zhang, Haiping,Wang, Xuede,Shao, Mingyan,Yuan, Shuna,Ni, Mi,Zhang, Haiping.

[17]Differential expression analysis by cDNA-AFLP of Solanum torvum upon Verticillium dahliae infection. Wang, Z.,Zhang, F.,Yang, Q.,Wang, Z.,Guo, J. L.,Huang, Q. S.,Huang, L. P.. 2010

[18]Characterization of Two Fungal Isolates from Cotton and Evaluation of their Potential for Biocontrol of Verticillium Wilt of Cotton. He-Qin Zhu,Zi-Li Feng,Zhi-Fang Li,Yong-Qiang Shi,Li-Hong Zhao,Jia-Rong Yang. 2013

[19]The oligosaccharyl transferase subunit STT3 mediates fungal development and is required for virulence in Verticillium dahliae. Su, Xiaofeng,Rehman, Latifur,Guo, Huiming,Li, Xiaokang,Cheng, Hongmei. 2018

[20]Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. Chen, Jie-Yin,Gui, Yue-Jing,Zhang, Dan-Dan,Wang, Jie,Li, Nan-Yang,Zhang, Wen-Qi,Ma, Xue-Feng,Li, Ting-Gang,Zhou, Lei,Wang, Bao-Li,Bao, Yu-Ming,Dai, Xiao-Feng,Liu, Chun,Si, Kai-Wei,Huang, Jin-Qun,Liang, Yong,Yang, Lin,Zhang, Geng-Yun,Short, Dylan P. G.,Subbarao, Krishna V.. 2018

作者其他论文 更多>>