Satellite-enabled enviromics to enhance crop improvement
文献类型: 外文期刊
第一作者: Resende, Rafael T.
作者: Resende, Rafael T.;Resende, Rafael T.;Resende, Rafael T.;Hickey, Lee;Amaral, Cibele H.;Amaral, Cibele H.;Marcatti, Gustavo E.;Xu, Yunbi;Xu, Yunbi;Xu, Yunbi
作者机构:
关键词: envirotyping; precision breeding; genotype-environment interactions; remote sensing; predictive models; enviromic information
期刊名称:MOLECULAR PLANT ( 影响因子:17.1; 五年影响因子:21.4 )
ISSN: 1674-2052
年卷期: 2024 年 17 卷 6 期
页码:
收录情况: SCI
摘要: Enviromics refers to the characterization of micro- and macroenvironments based on large-scale environmental datasets. By providing genotypic recommendations with predictive extrapolation at a site-specific level, enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate. Enviromics-based integration of statistics, envirotyping (i.e., determining environmental factors), and remote sensing could help unravel the complex interplay of genetics, environment, and management. To support this goal, exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops. Already, informatics management platforms aggregate diverse environmental datasets obtained using optical, thermal, radar, and light detection and ranging (LiDAR)sensors that capture detailed information about vegetation, surface structure, and terrain. This wealth of information, coupled with freely available climate data, fuels innovative enviromics research. While enviromics holds immense potential for breeding, a few obstacles remain, such as the need for (1) integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data; (2) state-of-the-art AI models for data integration, simulation, and prediction; (3) cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders; and (4) collaboration and data sharing among farmers, breeders, physiologists, geoinformatics experts, and programmers across research institutions. Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.
分类号:
- 相关文献
作者其他论文 更多>>
-
Comprehensive diallel analysis of combining ability and heterosis to Fusarium verticillioides ear rot resistance in maize
作者:Guo, Zifeng;Wang, Shanhong;Li, Wen-Xue;Xu, Yunbi;Zhong, Tao;Xu, Mingliang;Fan, Xing-Ming;Guo, Wei;Xu, Yunbi
关键词:
-
Integrative transcriptome and metabolome analysis reveals the mechanisms of light-induced pigmentation in purple waxy maize
作者:Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Xu, Yunbi;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Lu, Yuan;Yu, Yao;Kari, Ayiguli;Yang, Caixia;Wang, Chenyu;Zhang, Chao;Gu, Wei;Wang, Hui;Hu, Yingxiong;Sun, Pingdong;Guan, Yuan;Zheng, Hongjian;Xuan, Yanfang;Si, Wenshuai;Bai, Bing;Zhang, Xuecai;Xu, Yunbi;Xu, Yunbi;Prasanna, Boddupalli M.;Shi, Biao
关键词:waxy maize; anthocyanin; light; transcriptomics; metabolomics
-
Epistasis Activation Contributes Substantially to Heterosis in Temperate by Tropical Maize Hybrids
作者:Sang, Zhiqin;Wang, Hui;Yang, Yuxin;Liu, Xiaogang;Li, Zhiwei;Xu, Yunbi;Sang, Zhiqin;Zhang, Zhanqin;Wang, Hui;Wang, Hui;Xu, Yunbi
关键词:maize; heterosis; GWAS; epistatic effects; protein-protein interaction; multiple-hybrid population
-
Epistasis Activation Contributes Substantially to Heterosis in Temperate by Tropical Maize Hybrids
作者:Sang, Zhiqin;Wang, Hui;Yang, Yuxin;Liu, Xiaogang;Li, Zhiwei;Xu, Yunbi;Sang, Zhiqin;Zhang, Zhanqin;Wang, Hui;Wang, Hui;Xu, Yunbi
关键词:maize; heterosis; GWAS; epistatic effects; protein-protein interaction; multiple-hybrid population
-
Climate change challenges plant breeding
作者:Xiong, Wei;Xiong, Wei;Reynolds, Matthew;Xu, Yunbi;Xu, Yunbi
关键词:
-
QTL mapping and genomic selection for Fusarium ear rot resistance using two F-2:3 populations in maize
作者:Guo, Zifeng;Wang, Shanhong;Li, Wen-Xue;Liu, Jiacheng;Xu, Yunbi;Guo, Zifeng;Xu, Mingliang;Guo, Wei;Xu, Yunbi
关键词:Maize; Fusarium ear rot; Resistance; Quantitative trait locus; Genomic selection
-
Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction
作者:Xu, Yunbi;Li, Huihui;Qian, Qian;Xu, Yunbi;Xu, Yunbi;Zhang, Xingping;Zheng, Hongjian;Zhang, Jianan;Li, Huihui;Olsen, Michael S.;Prasanna, Boddupalli M.;Varshney, Rajeev K.
关键词:smart breeding; genomic selection; integrated genomic-enviromic selection; spatiotemporal omics; crop design; machine and deep learning; big data; artificial intelligence