Two major er1 alleles confer powdery mildew resistance in three pea cultivars bred in Yunnan Province, China

文献类型: 外文期刊

第一作者: Sun, Suli

作者: Sun, Suli;Duan, Canxing;Zhu, Zhendong;He, Yuhua;Dai, Cheng

作者机构:

关键词: Erysiphe pisi;er1;Pea;Powdery mildew;Yunnan Province

期刊名称:CROP JOURNAL ( 影响因子:4.407; 五年影响因子:5.687 )

ISSN: 2095-5421

年卷期: 2016 年 4 卷 5 期

页码:

收录情况: SCI

摘要: Powdery mildew, caused by Erysiphe pisi D.C., is an important disease of pea (Pisum sativum L.). The use of cultivars carrying powdery mildew resistance alleles at the er1 locus is the most effective and economical means of controlling this disease. The objectives of this study were to screen Chinese elite pea cultivars for resistance to E. pisi and to identify the responsible gene at the er1 locus. Among the 37 pea cultivars tested, three (Yunwan 8, Yunwan 21, and Yunwan 23) were immune to E. pisi infection in phenotypic evaluations. The full-length cDNA sequences of the er1 candidate gene, PsMLO1, from the three resistant cultivars and control plants were analyzed. Comparison of the cDNA sequences of 10 clones revealed differences among the powdery mildew-resistant cultivars, susceptible controls, and wild-type cultivar Sprinter. The observed resistance in Yunwan 8 plants resulted from a point mutation (C -> G) at position 680 of PsMLO1 that introduced a stop codon, leading to premature termination of protein synthesis. The responsible resistance allele was identified as er1-1. Powdery mildew resistance in Yunwan 21 and Yunwan 23 plants was caused by identical insertions or deletions in PsMLO1. Three distinct PsMLO1 transcripts were observed in Yunwan 21 and Yunwan 23 plants. These transcripts were characterized by a 129-bp deletion and 155- and 220-bp insertions, respectively. The responsible resistance allele was identified as er1-2. We have characterized two important er1 alleles in three E. pisi-resistant pea cultivars bred in Yunnan Province, China. These cultivars represent important genetic resources for the breeding of powdery mildew-resistant pea cultivars. (C) 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

分类号:

  • 相关文献

[1]Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. Sun, Suli,Wang, Zhongyi,Fu, Haining,Duan, Canxing,Wang, Xiaoming,Zhu, Zhendong. 2015

[2]Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.). Ma, Yu,Main, Dorrie,Coyne, Clarice J.,Pavan, Stefano,Sun, Suli,Zhu, Zhendong,Zong, Xuxiao,Leitao, Jose,McGee, Rebecca J.. 2017

[3]Seroepidemiology of Toxoplasma gondii infection in Bai and Han ethnic groups in southwestern China. Li, H. -L.,Chen, J.,Zhu, X. -Q.,Li, H. -L.,Dong, L.,Li, Q.,Zhang, L.,Zhu, X. -Q.,Zou, F. -C.. 2015

[4]Genetic structure and phylogeography of Pyrus pashia L. (Rosaceae) in Yunnan Province, China, revealed by chloroplast DNA analyses. Liu, Jing,Sun, Ping,Zheng, Xiaoyan,Hu, Chunyun,Teng, Yuanwen,Zheng, Xiaoyan,Potter, Daniel,Li, Kunming. 2013

[5]Mango Malformation Disease in South China Caused by Fusarium proliferatum. Zhan, Ru-Lin,Yang, Shun-Jin,Liu, Feng,Zhao, Yan-Long,Chang, Jin-Mei,He, Yan-Biao,Ho, Hon-Hing.

[6]DEVELOPMENT AND CHARACTERIZATION OF 41 NOVEL EST-SSR MARKERS FOR PISUM SATIVUM (LEGUMINOSAE). Xu, Sheng-Chun,Gong, Ya-Ming,Hu, Qi-Zan,Zhang, Gu-Wen,Mao, Wei-Hua,Fu, Wan,Xian, Qiang-Qiang,Fu, Wan,Xian, Qiang-Qiang. 2012

[7]Adaptation of Wheat-Pea Intercropping Pattern in China to Reduce Sitobion avenae (Hemiptera: Aphididae) Occurrence by Promoting Natural Enemies. Chen, Julian,Cheng, Dengfa,Zhou, Haibo,Chen, Lin,Francis, Frederic,Haubruge, Eric,Liu, Yong,Bragard, Claude.

[8]Developing new SSR markers from ESTs of pea (Pisum sativum L.). Gong, Ya-ming,Xu, Sheng-chun,Hu, Qi-zan,Zhang, Gu-wen,Ding, Ju,Mao, Wei-hua,Li, Ya-dan. 2010

[9]Impact of direct and indirect application of rising furfural concentrations on viability, infectivity and reproduction of the root knot nematode, Meloidogyne incognita in Pisum sativum. Abdelnabby, Hazem,Wang, Yunhe,Xiao, Xueqiong,Wang, Gaofeng,Xiao, Yannong,Abdelnabby, Hazem,Yang, Fan.

[10]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[11]Two members of TaRLK family confer powdery mildew resistance in common wheat. Tingting Chen,Jin Xiao,Jun Xu,Wentao Wan,Bi Qin,Aizhong Cao,Wei Chen,Liping Xing,Chen Du,Xiquan Gao,Shouzhong Zhang,Ruiqi Zhang,Wenbiao Shen,Haiyan Wang,Xiue Wang. 2016

[12]Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Caixia Lan,Xiaowen Ni,Jun Yan,Yong Zhang,Xianchun Xia,Xinmin Chen,Zhonghu He.

[13]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[14]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[15]Reaction to powdery mildew and stripe rust in related species and landraces of wheat. He, Danxia,Li, Hongjie,Xu, Shichang,Duan, Xiayu,Zhou, Yilin,Li, Lihui. 2007

[16]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[17]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[18]Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao. Feng Jing,Fan Jie-ru,Zhou Yi-lin,Xu Xiao-dan,Ma Zhan-hong,Liu Zhi-yong,Li Qiang. 2018

[19]Pathotypes and Genetic Diversity of Blumeria graminis f sp hordei in the Winter Barley Regions in China. Zhu Jing-huan,Wang Jun-mei,Jia Qiao-jun,Yang Jian-ming,Lin Feng,Hua Wei,Shang Yi,Zhu Jing-huan,Zhou Yi-jun,Zhou Yi-jun. 2010

[20]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

作者其他论文 更多>>