Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean

文献类型: 外文期刊

第一作者: Wu, Jing

作者: Wu, Jing;Wang, Lanfen;Wang, Shumin

作者机构:

关键词: Common bean;Transcription factors;Drought

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2016 年 16 卷

页码:

收录情况: SCI

摘要: Background: Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. Results: In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Conclusions: Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

分类号:

  • 相关文献

[1]MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Wu, Jing,Wang, Lanfen,Wang, Shumin. 2017

[2]Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. Wu, Jing,Wang, Lanfen,Wang, Shumin,Chen, Jibao. 2016

[3]Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Yu, Linhui,Chen, Xi,Wang, Zhen,Xiang, Chengbin,Wang, Shimei,Zhu, Qisheng,Wang, Yuping,Li, Shigui,Wang, Shimei,Zhu, Qisheng.

[4]Cloning of the OAT gene and the correlation between its expression and drought tolerance in Phaseolus vulgaris L.. Chen Ji-bao,Cao Yuan-nan,Zhang Zhao-yuan,Wang Shu-min,Wu Jing,Wang Lan-fen. 2016

[5]Salicylic Acid Enhances Resistance to Fusarium oxysporum f. sp. phaseoli in Common Beans (Phaseolus vulgaris L.). Xue, Ren Feng,Wu, Jing,Wang, Lan Fen,Wang, Xiao Ming,Zhu, Zhen Dong,Wang, Shu Min,Xue, Ren Feng,Ge, Wei De,Blair, Matthew W.. 2014

[6]Comparisons of phaseolin type and alpha-amylase inhibitor in common bean (Phaseolus vulgaris L.) in China. Yao, Yang,Hu, Yibo,Zhu, Yingying,Gao, Yue,Ren, Guixing. 2016

[7]Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Chen, Ji Bao,Yang, Jian Wei,Zhang, Zhao Yuan,Feng, Xiao Fan,Wang, Shu Min.

[8]Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. Wu, Jing,Zhu, Jifeng,Wang, Lanfen,Wang, Shumin. 2017

[9]Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.). Chen, Jibao,Lu, Yunfeng,Cao, Yuannan,Zeng, Hui,Zhang, Zhaoyuan,Wang, Lanfen,Wang, Shumin. 2016

[10]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[11]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[12]Bombyx mori transcription factors: Genome-wide identification, expression profiles and response to pathogens by microarray analysis. Cheng, Tingcai,Xu, Pingzhen,Fang, Ting,Xia, Qingyou,Huang, Lulin. 2012

[13]Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey). Yin, Ling,Cao, Bihao,Lei, Jianjun,Chen, Guoju,Chen, Hancai. 2017

[14]The dynamic landscape of gene regulation during Bombyx mori oogenesis. Zhang, Qiang,Sun, Wei,Sun, Bang-Yong,Zhang, Ze,Xiao, Yang,Zhang, Ze. 2017

[15]Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. Sun, Jiayi,Peebles, Christie A. M.,Manmathan, Harish,Sun, Cheng,Sun, Cheng. 2016

[16]Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. Miao, Liyun,Zhang, Libin,Raboanatahiry, Nadia,Fu, Chunhua,Li, Maoteng,Miao, Liyun,Xiang, Jun,Gan, Jianping,Li, Maoteng,Lu, Guangyuan,Zhang, Xuekun. 2016

[17]NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Shao, Hongbo,Shao, Hongbo,Shao, Hongbo,Wang, Hongyan,Tang, Xiaoli,Wang, Hongyan. 2015

[18]Construction of ethylene regulatory network based on the phytohormones related gene transcriptome profiling and prediction of transcription factor activities in soybean. Cheng, Yunqing,Liu, Jianfeng,Liu, Qiang,Liu, Chunming,Yang, Xiangdong,Ma, Rui.

[19]Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Wang, Hongyan,Wang, Honglei,Shao, Hongbo,Shao, Hongbo,Tang, Xiaoli. 2016

[20]Construction of recombinant proteins for reprogramming of endangered Luxi cattle fibroblast cells. Hu, P. F.,Guan, W. J.,Li, X. C.,Ma, Y. H..

作者其他论文 更多>>