Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification

文献类型: 外文期刊

第一作者: Xie, Lulu

作者: Xie, Lulu;Zhang, Shifan;Zhang, Shujiang;Li, Fei;Zhang, Hui;Li, Guoliang;Wei, Yunxiao;Sun, Rifei;Liu, Pingli;Zhu, Zhixin

作者机构:

关键词: PKS III multigene family;CHS;STS;phylogenetic reconstruction;functional diversification;gene expression;cis-elements

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: Polyketide synthases (PKSs) utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, types I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS)-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and 25 land plants (1 bryophyte, 1 lycophyte, 2 basal angiosperms, 16 core eudicots, and 5 monocots). PKS sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis-regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Glade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within alpha-helixes in late appeared branches of clade A. account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL, or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional diversification of plant type III PKS enzymes played a critical role in the ancient conquest of the land by early plants and angiosperm diversification.

分类号:

  • 相关文献

[1]Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Yi, Y. J.,Li, H. Y.,Wang, F.,Yi, Y. J.,An, L. Z.,Wang, X. L.,Huang, X. Q.. 2008

[2]Complementation and expression analysis of SoRab1A and SoRab2A in sugarcane demonstrates their functional diversification. Zhang, Jia-Ming,Sylvester, Anne W.,Li, Ding-Qin,Sun, Xue-Piao. 2006

[3]Effect of site-specific heterogeneous evolution on phylogenetic reconstruction: A simple evaluation. Su, Zhixi,Zhong, Yang,Gu, Xun,Su, Zhixi,Zhong, Yang,Gu, Xun,Cheng, Qiqun,Su, Zhixi,Gu, Xun,Cheng, Qiqun,Gu, Xun. 2009

[4]Genotyping of bovine viral diarrhea viruses from cattle in China between 2005 and 2008. Xue, Fei,Zhu, Yuan-Mao,Li, Jiao,Zhu, Li-Chuang,Ren, Xian-Gang,Feng, Jun-Ke,Shi, Hong-Fei,Gao, Yu-Ran.

[5]The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. Liu, Xiaoqing,Yang, Wenzhu,Li, Ye,Li, Suzhen,Zhou, Xiaojin,Zhao, Qianqian,Fan, Yunliu,Lin, Min,Chen, Rumei,Li, Suzhen.

[6]Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family. Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua,Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua.

[7]Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Wei, Jianhua.

[8]Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Zhang, Zhongbao,Li, Xianglong,Han, Meng,Wu, Zhongyi,Zhang, Zhongbao,Li, Xianglong,Han, Meng,Wu, Zhongyi,Yu, Rong,Han, Meng,Wu, Zhongyi.

[9]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[10]Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp PCC6803. Chen, Gao,Bian, Fei,Peng, Zhenying,Zhang, Yan,Yu, Jinhui,Xuan, Ning,Bi, Yuping,He, Qingfang,Chen, Gao,Bian, Fei,Peng, Zhenying,Zhang, Yan,Yu, Jinhui,Xuan, Ning,Bi, Yuping,He, Qingfang,He, Qingfang,Wang, Qiang,Qu, Shujie,Ge, Haitao. 2014

[11]Functional Expression of the Arachis hypogaea L. Acyl-ACP Thioesterases AhFatA and AhFatB Enhances Fatty Acid Production in Synechocystis sp PCC6803. Chen, Gao,Zhang, Yan,Peng, Zhenying,Fan, Zhongxue,Bian, Fei,Yu, Jinhui,Chen, Gao,Zhang, Yan,Peng, Zhenying,Fan, Zhongxue,Bian, Fei,Yu, Jinhui,Chen, Jun,Qin, Song,Chen, Jun,He, Qingfang. 2017

[12]Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Zhang, Chunsha,Zhang, Hongwei,Liang, Yi,Zhan, Zongxiang,Liu, Bingjiang,Chen, Zhentai. 2016

[13]Analysis of Differentially Expressed Genes in Genic Male Sterility Cotton (Gossypium hirsutum L.) Using cDNA-AFLP. Xiaoding Ma,Chaozhu Xing,Liping Guo,Yangcang Gong,Hailin Wang,Yunlei Zhao,Jianyong Wu. 2007

[14]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[15]Variants and Gene Expression of the TLR2 Gene and Susceptibility to Mastitis in Cattle. Huang, Jinming,Liu, Li,Wang, Hongmei,Zhang, Cuixia,Ju, Zhihua,Wang, Changfa,Zhong, Jifeng.

[16]Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. Wang, Jiangshan,Cui, Feng,Hou, Lei,Zhao, Shuzhen,Xia, Han,Qiu, Jingjing,Li, Tingting,Zhang, Ye,Wang, Xingjun,Zhao, Chuanzhi,Wang, Jiangshan,Zhang, Quan,Qiu, Jingjing,Wang, Xingjun,Zhao, Chuanzhi. 2017

[17]Differential Gene Expression Between Hybrids and Their Parents During the Four Crucial Stages of Cotton Growth and Development. Zhao Yun-lei,Yu Shu-xun,Xing Chao-zhu,Fan Shu-li,Song Mei-zhen,Ye Wu-wei. 2009

[18]Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Syed Tariq Shah,Chaoyou Pang,Shuli Fan,Meizhen Song,Saima Arain,Shuxun Yu.

[19]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[20]Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yan, Juan,Yu, Ming-liang. 2014

作者其他论文 更多>>