Cloning of Hsp21 gene and its expression in Chinese shrimp Fenneropenaeus chinensis in response to WSSV challenge

文献类型: 外文期刊

第一作者: Gao, Huan

作者: Gao, Huan;Lai, Xiaofang;Yan, Binlun;Gao, Huan;Kong, Jie;Wang, Weiji;Meng, Xianhong;Cai, Shengli

作者机构:

关键词: Fenneropenaeus chinensis;Heat shock protein;Hsp21 gene;WSSV

期刊名称:JOURNAL OF APPLIED GENETICS ( 影响因子:3.24; 五年影响因子:2.756 )

ISSN: 1234-1983

年卷期: 2014 年 55 卷 2 期

页码:

收录情况: SCI

摘要: In the present study, a DNA sequence encoding a small heat shock protein gene (FcHsp21) in the Chinese shrimp, Fenneropenaeus chinensis, was cloned, and its expression was analyzed after white spot syndrome virus (WSSV) infection. The FcHsp21 gene contained an open reading frame (ORF) of 555 bp in length, encoding a 184 amino acid protein with a theoretical size of about 21 kDa and a predicted isoelectric point of 5.38. The mRNA of the Hsp21 had a long Poly(A) tail (748 bp) with six polyadenylation signals (AATAA) downstream from the terminator. In addition, the gene contained a relatively long intron (507 bp), which has not been described in shrimps. The intron contained a long compound type microsatellite repeat sequence. The analysis of the phylogenetics revealed that the Hsp21 was highly conserved among the genomes of animals. Our results show that the expression modes of FcHsp21 can be changed by different WSSV infection methods. The expression of FcHsp21 was inhibited by muscle-injecting WSSV, but induced by feeding WSSV.

分类号:

  • 相关文献

[1]Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp I Fenneropenaeus chinensis in response to viral and bacterial infections. He, Yuying,Liu, Ping,Li, Jian,Wang, Qingyin,He, Yuying,Li, Jian,Yao, Wanlong. 2018

[2]Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp Fenneropenaeus chinensis by real-time PCR. Gao, Huan,Kong, Jie,Li, Zhanjun,Xiao, Guangxia,Meng, Xianhong,Gao, Huan.

[3]Identification and characterization of lymph organ microRNAs in red swamp crayfish, Procambarus clarkii infected with white spot syndrome virus. Du, Zhi-Qiang,Leng, Xiao-Yun,Jin, Yan-Hui,Shen, Xiu-Li,Li, Xin-Cang. 2017

[4]Isolation of Prawn (Exopalaemon carinicauda) Lipopolysaccharide and beta-1, 3-Glucan Binding Protein Gene and Its Expression in Responding to Bacterial and Viral Infections. Ge Qianqian,Li Jitao,Sun Ming,Ge Qianqian,Li Jian,Sun Ming,Zhao Fazhen,Ge Qianqian,Li Jian,Sun Ming,Zhao Fazhen,Duan Yafei. 2016

[5]Bioassay evidence for the transmission of WSSV by the harpacticoid copepod Nitocra sp.. Zhang, Jia-Song,Dong, Shuang-Lin,Dong, Yun-Wei,Tian, Xiang-Li,Hou, Chun-Qiang,Zhang, Jia-Song. 2008

[6]Multiple proteins of White spot syndrome virus involved in recognition of beta-integrin. Zhang, Jing-Yan,Liu, Qing-Hui,Huang, Jie,Zhang, Jing-Yan.

[7]White spot syndrome virus VP51 interact with ribosomal protein L7 of Litopenaeus vannamei. Liu, Qing-hui,Ma, Fang-fang,Guan, Guang-Kuo,Wang, Xiu-Fang,Li, Chen,Huang, Jie,Liu, Qing-hui,Li, Chen,Huang, Jie,Ma, Fang-fang,Guan, Guang-Kuo,Wang, Xiu-Fang.

[8]Litopenaeus vannamei clathrin coat AP17 involved in white spot syndrome virus infection. Wang, Xiu-Fang,Liu, Qing-Hui,Huang, Jie,Wang, Xiu-Fang,Wu, Yin,Liu, Qing-Hui,Huang, Jie.

[9]Virus-phytoplankton adhesion: a new WSSV transmission route to zooplankton. Mang Jiasong,Dong Shuanglin,Tian Xiangli,Dong Yunwei,Liu Xiangyi,Mang Jiasong,Liu Xiangyi,Yan Dongchun. 2007

[10]Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm. Zhang, J. S.,Li, Z. J.,Wen, G. L.,Luo, L.,Dong, H. B.,Wang, G. L.,Zhang, H. J.,Luo, L.. 2016

[11]A farnesoic acid O-methyltransferase (FAMeT) from Exopalaemon carinicauda is responsive to Vibrio anguillarum and WSSV challenge. Duan, Yafei,Liu, Ping,Li, Jitao,Li, Jian,Chen, Ping,Duan, Yafei,Wang, Yun.

[12]Sf-PHB2, A new transcription factor, Drives WSSV Ie1 Gene Expression via a 12-bp DNA Element. Ma, Guoda,Yu, Li,Wang, Qian,Ma, Guoda,Cui, Yudong,Liu, Wei,Kwang, Jimmy. 2012

[13]Efficiency of two fragments of VP28 against White Spot Syndrome Virus in Litopenaeus vannamei. Qiu, Zhi-guang,Liu, Qing-hui,Huang, Jie. 2012

[14]VP90 of white spot syndrome virus interacts with VP26 and VP28. Li, Qian,Liu, Qing-Hui,Huang, Jie,Li, Qian. 2012

[15]Comparison of White Spot Syndrome Virus Infection Resistance Between Exopalaemon carinicauda and Litopenaeus vannamei Under Different Salinity Stresses. Ge Qianqian,Yu Ge,Sun Ming,Li Jitao,Li Jian,Ge Qianqian,Li Jitao,Li Jian. 2017

[16]Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn Exopalaemon carinicauda. Ge, Qianqian,Ge, Qianqian,Li, Jitao,Li, Jian,Zhao, Fazhen,Ren, Hai,Liang, Junping,Duan, Yafei.

[17]Thioredoxin of Litopenaeus vannamei facilitated white spot syndrome virus infection. Liu, Peng-fei,Liu, Qing-hui,Huang, Jie,Liu, Qing-hui,Huang, Jie,Liu, Peng-fei,Wu, Yin.

[18]Studies of the viral binding proteins of shrimp BP53, a receptor of white spot syndrome virus. Li, Chen,Gao, Xiao-Xiao,Huang, Jie,Liang, Yan.

[19]Cloning of Litopenaeus vannamei CD63 and it's role in white spot syndrome virus infection. Guan, Guang-Kuo,Liu, Qing-Hui,Li, Chen,Huang, Jie,Guan, Guang-Kuo,Liu, Qing-Hui,Huang, Jie.

[20]Binding of white spot syndrome virus to Artemia sp cell membranes. Feng, Shuying,Li, Guangda,Feng, Wenpo,Feng, Shuying,Huang, Jie.

作者其他论文 更多>>