The Long-Term Application of Controlled-Release Nitrogen Fertilizer Maintains a More Stable Bacterial Community and Nitrogen Cycling Functions Than Common Urea in Fluvo-Aquic Soil

文献类型: 外文期刊

第一作者: Ma, Lei

作者: Ma, Lei;Li, Yan;Wei, Jianlin;Li, Yudong;Zheng, Fuli;Liu, Zhaohui;Tan, Deshui;Li, Zishuang;Li, Hongjie

作者机构:

关键词: bacterial community; controlled-release nitrogen fertilizer; fluvo-aquic soil; long-term fertilization; maize cultivation; nitrogen-cycling functions; urea

期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )

ISSN:

年卷期: 2024 年 14 卷 1 期

页码:

收录情况: SCI

摘要: Controlled-release nitrogen fertilizer (CRNF) has been proven to surpass common urea by mitigating nutrient losses, enhancing soil quality, and improving crop productivity. However, the long-term effects of CRNF on soil biological properties are not well understood. Here, a 12-year field experiment was conducted with five treatments: no N fertilizer (PK); the split application of urea at the farmer's practice rate (FP) and the optimal rate (OPT); the one-time application of CRNF at the same rate as the OPT (CRNF); and a 20% reduced rate of the OPT (0.8CRNF). Soil samples were collected during the maize tasseling and filling stages; high-throughput sequencing and the PICRUSt2 method were employed to determine the bacterial community and its functional potential. The results showed that CRNF significantly increased alkaline hydrolysis N by 14.10% and 9.45% compared to OPT during the tasseling and filling stages, respectively. This increase in soil available N resulted in a significant increase in bacterial diversity of 2.09% and 2.35% compared with the FP and OPT, respectively. The bacterial community in the FP and OPT changed markedly between the tasseling and filling stages, with many bacterial species at the ASV and genus levels showing variations in relative abundance. In contrast, CRNF and 0.8CRNF exhibited stable N-cycling functions, as indicated by the lower variations in nitrate reductase and predicted N-cycling functional genes between the tasseling and filling stages. The obtained results suggest that CRNF application can enhance soil N supply, promote the formation of stable bacterial communities, and maintain stable N-cycling functions.

分类号:

  • 相关文献
作者其他论文 更多>>