A novel method for online sex sorting of silkworm pupae (Bombyx mori) using computer vision combined with deep learning
文献类型: 外文期刊
第一作者: Guo, Feng
作者: Guo, Feng;Qin, Wei;Fu, Xinglan;Zhao, Chunjiang;Li, Guanglin;Tao, Dan;Zhao, Chunjiang
作者机构:
关键词: silkworm pupae; crossbreeding; sex identification; computer vision; cascaded spatial channel attention
期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.5; 五年影响因子:4.2 )
ISSN: 0022-5142
年卷期: 2025 年 105 卷 8 期
页码:
收录情况: SCI
摘要: BACKGROUNDSilkworm pupae (SP), the pupal stage of an edible insect, have strong potential in the food, medicine, and cosmetic industries. Sex sorting is essential to enhance nutritional content and genetic traits in SP crossbreeding but it remains labor intensive and time consuming. An intelligent method is needed urgently to improve efficiency and productivity.RESULTSTo address the problem, an automatic SP sex-separation system was developed based on computer vision and deep learning. Specifically, based on gonad features, a novel real-time SP sex identification model with cascaded spatial channel attention (CSCA) and G-GhostNet (GPU-Ghost Network) was developed, which can capture regions of interest and achieve feature diversity efficiently. A new loss function was proposed to reduce model complexity and avoid overfitting in the training. In comparison with benchmark methods on the test set, the new model achieved superior performance with an accuracy of 96.48%. The experimental sorting accuracy for SP reached 95.59%, validating the effectiveness of the novel gender-separation strategy.CONCLUSIONThis research presents a practical method for online SP gender separation, potentially aiding the production of high-quality SP. (c) 2025 Society of Chemical Industry.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion
作者:Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi
关键词:Multi-source domain feature evidence vector; fusion; Trusted deep multi-view learning; Fish behavior recognition; Fish Behavior Recognition Dataset; Associative cross-fusion
-
Rapid and highly sensitive detection of trace chromium and copper in tea infusion using laser-induced breakdown spectroscopy combined with electrospinning technology
作者:He, Panyu;Fu, Xinglan;Wang, Chenghao;Gou, Yujiang;An, Ting;Li, Guanglin;Cao, Fengjing;Tian, Hongwu;Ma, Shixiang;Liang, Yiyi
关键词:Laser-induced breakdown spectroscopy (LIBS); Electrospinning (ES); Tea infusion; Nanoparticles(NPs); Electrospun nanofiber membranes (ENM); Heavy metals detection
-
An Improved iTransformer with RevIN and SSA for Greenhouse Soil Temperature Prediction
作者:Wang, Fahai;Wang, Yiqun;Chen, Wenbai;Zhao, Chunjiang
关键词:time-series prediction; iTransformer; singular spectrum analysis; reversible instance normalization; greenhouse control
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding