Loose and tower-type canopy structure can improve cotton yield in the Yellow River basin of China by increasing light interception
文献类型: 外文期刊
第一作者: An, Jie
作者: An, Jie;Zhang, Zhenggui;Li, Xiaofei;Xing, Fangfang;Lei, Yaping;Yang, Beifang;Wang, Zhanbiao;Han, Yingchun;Wang, Guoping;Feng, Lu;Du, Wenli;Li, Yabing;Wang, Zhanbiao;Chen, Huanxuan;Feng, Lu;Li, Yabing
作者机构:
关键词: Cotton cultivar; cotton canopy structure; light interception; yield
期刊名称:ARCHIVES OF AGRONOMY AND SOIL SCIENCE ( 影响因子:2.242; 五年影响因子:2.76 )
ISSN: 0365-0340
年卷期:
页码:
收录情况: SCI
摘要: Determining the optimal plant architecture and canopy structure are important objectives in research on the breeding and cultivation of high-yielding crops. To address this challenge, a field experiment was conducted in Anyang, Henan, China, to assess cotton light interception, boll spatial distribution, leaf area index (LAI), plant height and biomass, lint yield and yield component during 2018-2019. Treatments including 10 cotton cultivars with belong to tower-shaped and tube-type canopy structure. Compared with compact cotton varieties, the loose and tower-shaped cotton varieties intercepted more light (average 28.6%) and had a higher LAI (average 34.2%), resulting in a higher cotton yield (average 14.8%). In addition, polynomial correlation showed that the maximum light interception rate occurred at the flowering and boll-forming stage, when the annual mean plant height (94.6 cm), LAI (3.58) and biomass (15,006 kg ha(-1)) all reached their peak. Moreover, yield was extremely significantly positively correlated with intercepted photosynthetically active radiation (IPAR) (R = 0.7) and positively correlated with light use efficiency (LUE) (R = 0.36). Overall, the results suggest that cotton cultivars with loose and tower-type canopy structures intercept more light and should be planted to increase cotton yield and LUE in the Yellow River basin of China and areas with similar conditions.
分类号:
- 相关文献
作者其他论文 更多>>
-
Soil Inversion with Subsoiling Increases Cotton Yield Through Improving Soil Properties and Root Growth
作者:Li, Pengcheng;Feng, Weina;Dong, Helin;Zheng, Cangsong;Sun, Miao;Shao, Jingjing;Zhang, Zhenggui;Pan, Zhanlei;Wang, Jian;Sun, Guilan;Li, Junhong;Zhang, Yaopeng;Zhao, Wenqi;Zhai, Menghua;Wang, Zhanbiao;Li, Pengcheng;Feng, Weina;Dong, Helin;Zhang, Zhenggui;Pan, Zhanlei;Wang, Jian;Sun, Guilan;Li, Junhong;Zhang, Yaopeng;Zhao, Wenqi;Zhai, Menghua;Wang, Zhanbiao;Wang, Shulin
关键词:soil inversion with subsoiling; soil nutrients; residual effect; cotton yield
-
Increasing exposure of cotton growing areas to compound drought and heat events in a warming climate
作者:Liu, Shengli;Zhang, Wei;Shi, Tongtong;Li, Tong;Wang, Zhanbiao;Ma, Xiongfeng;Liu, Shengli;Li, Tong;Wang, Zhanbiao;Ma, Xiongfeng;Li, Hui;Zhou, Guanyin;Wang, Zhanbiao;Ma, Xiongfeng
关键词:Compound extreme events; Climate change; Cotton; Exposure; Probabilistic response
-
Peanut-cotton intercropping to enhance soil ecosystem multifunctionality: Roles of microbial keystone taxa, assembly processes, and C-cycling profiles
作者:Zhang, Shijie;Feng, Lu;Li, Xiao-Fei;Li, Yabing;Jiao, Zhen;Han, Yingchun;Wang, Guoping;Feng, Lu;Lei, Yaping;Xiong, Shiwu;Yang, Beifang;Zhi, Xiaoyu;Xin, Minghua;Jiao, Yahui;Li, Xiao-Fei;Li, Yabing;Zhang, Shijie;Jiao, Zhen
关键词:Soil ecosystem multifunctionality; Keystone taxa; Microbial community assembly; Carbon cycling; Peanut-cotton intercropping
-
Climate normals shape regional disparities of cotton yield failures compared to dominant impacts from climate extremes
作者:Liu, Shengli;Shi, Tongtong;Li, Tong;You, Xinru;Wang, Zhanbiao;Ma, Xiongfeng;Liu, Shengli;Li, Tong;Dai, Shuai;Wang, Wenkui;Wang, Zhanbiao;Ma, Xiongfeng;Dai, Shuai;Wang, Zhanbiao;Ma, Xiongfeng
关键词:Spatial compounds; Cotton yield failure; Climate change; Cotton breeding
-
Tracing the carbon footprint of cotton garments from seed to garment: Evidence from an empirical study of multiple sites in China
作者:Wang, Shuchen;Huang, Weibin;Zhang, Zhenggui;Wang, Zhanbiao;Zhao, Wenqi;Zhang, Zhenggui;Wang, Zhanbiao;Chong, Chenxi;Guo, Simeng;Wang, Yuhan;Zhang, Yaopeng;Pan, Zhanlei;Wang, Jian;Li, Xin;Zhang, Zhenggui;Wang, Zhanbiao
关键词:Carbon footprint; Cotton textile; Sustainable production; Environmental impact; Life cycle assessment
-
The long non-coding RNA MSTRG.32189-PcmiR399b-PcUBC24 module regulates phosphate accumulation and disease resistance to Botryosphaeria dothidea in pear
作者:Yang, Yuekun;Lv, Shamei;He, Ying;Zhang, Xiaoyan;Liu, Yu;Wang, Guoping;Hong, Ni;Wang, Liping;Yang, Yuekun;Lv, Shamei;He, Ying;Zhang, Xiaoyan;Liu, Yu;Wang, Guoping;Hong, Ni;Wang, Liping;Yang, Yuekun;Huang, Xiaosan
关键词:
-
Genome-Wide Identification and Comprehensive Characterization of Luffa Sucrose Phosphate Synthase Gene Family and Revealing LaSPS3/4's Role in Drought Resistance
作者:Tian, Xiaocheng;He, Guoliang;Wang, Hanyi;Huang, Liujing;Yin, Yeqiu;Wang, Guoping;Zhao, Hongbo;Tian, Xiaocheng;Ma, Chongjian;Tian, Xiaocheng;Sun, Shaolong;Liu, Jianting;Zhu, Haisheng;Yan, Fei
关键词:
Luffa acutangula ;SPS ; bioinformatics analysis