Soil multifunctionality of paddy field is explained by soil pH rather than microbial diversity after 8-years of repeated applications of biochar and nitrogen fertilizer

文献类型: 外文期刊

第一作者: Dong, Zhijie

作者: Dong, Zhijie;Li, Hongbo;Sun, Jiali;Zhang, Aiping;Xiao, Jiannan;Liu, Ruliang

作者机构:

关键词: SOC sequestration; Nutrient cycling; Soil properties; Soil function; Bacterial and fungal diversity

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:10.753; 五年影响因子:10.237 )

ISSN: 0048-9697

年卷期: 2022 年 853 卷

页码:

收录情况: SCI

摘要: Biochar and nitrogen (N) fertilizer application can increase soil carbon sequestration and enhance soil nutrient cycling. However, few studies have systematically explored the effects of the long-term application of biochar and N fertilizer on soil multifunctionality and characterized its driving factors. Based on an 8-year biochar paddy -field experiment in anthropogenic alluvial alkaline soil in northwest China, we measured eleven soil functions associated with soil carbon sequestration and nutrient cycling and four potential factors (soil bacterial and fungal richness, pH, and aggregates) governing soil functions to investigate the effects of three biochar rates (C0, no biochar; C1, 4.5 t ha-1 year-1; C2, 13.5 t ha-1 year-1) and two N fertilizer rates (N0, no N fertilizer; N1, 300 kg N ha-1 year-1) on individual soil eco-system functions and soil multifunctionality. Our results showed that biochar and N fertilizer application increased soil organic carbon (SOC) by 20-58 % and total N content by 9.3-15 % and had a varied effect (but mainly positive) on the activity of enzymes associated with soil carbon, N, and phosphorus cycling. Different application rates of biochar and N fertilizer had no influence on soil DNA concentrations, but did change soil microbial diversity, soil aggregation, and pH. The carbon storage function (SOC content) of soils is an important predictor of multifunctionality. Long-term bio-char and N fertilizer application indirectly explained soil multifunctionality by altering soil pH, whereas bacterial and fungal diversity and soil aggregates did not play significant roles in explaining soil multifunctionality. These findings suggest that the application of biochar and N fertilizer can enhance soil multifunctionality by directly improving the individual functions [soil carbon sequestration (SOC content)] and decreasing soil pH in alkaline paddy fields.

分类号:

  • 相关文献
作者其他论文 更多>>