Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways
文献类型: 外文期刊
第一作者: Zhang, Mengchao
作者: Zhang, Mengchao;Zhang, Li;Zhang, Mengchao;Lu, Xueli;Ren, Tingting;Meng, Chen;Xu, Zongchang;Marowa, Prince;Wang, Juying;Yang, Hui;Li, Chunhua
作者机构:
关键词: apocynum venetum; salt stress; ROS; flavonoids; JA; IAA
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.6; 五年影响因子:6.8 )
ISSN: 1664-462X
年卷期: 2023 年 14 卷
页码:
收录情况: SCI
摘要: Salt stress is a serious abiotic stress that primarily inhibits plant growth, resulting in severe yield losses. Our previous research found that flavonoids play important roles in A. venetum salt stress tolerance. In response to salt stress, we noted that the flavonoid content was depleted in A. venetum. However, the detailed mechanism is still not clear. In this study, the expression patterns of three flavonoids synthetase genes, AvF3H, AvF3'H, and AvFLS were systemically analyzed under salt stress in A. venetum seedlings. The salt tolerance of transgenic Arabidopsis plants was improved by heterologous overexpression of these synthetase genes. The NBT and DAB staining results as well as H2O2 and O-2 center dot(-) content analysis revealed that under salt stress, ROS molecules were reduced in transgenic plants compared to WT plants, which corresponded to the activation of the antioxidant enzyme system and an increase in total flavonoid content, particularly rutin, eriodictyol, and naringerin in transgenic plants. External application of flavonoids reduced ROS damage in WT plants just like what we observed in the transgenic plants (without the external application). Additionally, our transcriptome analysis demonstrated that auxin and jasmonic acid biosynthesis genes, as well as signaling transduction genes, were primarily activated in transgenic plants under salt stress, leading to activation of the cell wall biosynthesis or modification genes that promote plant growth. As a result, we investigated the mechanism through flavonoids enhance the salt tolerance, offering a theoretical foundation for enhancing salt tolerance in plants.
分类号:
- 相关文献
作者其他论文 更多>>
-
Short-term high-light intensity and low temperature improve the quality and flavor of lettuce grown in plant factory
作者:Zhang, Li;Huang, Tao;Jiang, Hui;Song, Bo;Duan, Zhiling;Li, Yuejian;Yang, Xiao;Yang, Qichang;Zhang, Qiqi;Song, Hongyuan;Escalona Contreras, Victor Hugo
关键词:light quality; temperature; nutritional value; bitterness; leafy vegetables
-
Transcriptomic and comprehensive analysis of salt stress-alleviating - alleviating mechanisms by Ensifer sesbaniae DY22 in soybean
作者:Sui, Xiaona;Xu, Zongchang;Zheng, Yanfen;Li, Yiqiang;Zhang, Chengsheng;Meng, Chen;Xu, Zongchang;Zheng, Yanfen;Li, Yiqiang;Zhang, Chengsheng;Meng, Chen
关键词:Salt stress; Soybean; Ensifer sesbaniae DY22; Plant growth-promoting rhizobacteria
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales
作者:Zou, Zhi;Zhang, Li;Zhao, Yongguo;Zhang, Li;Zhao, Yongguo
关键词:whole-genome duplication; gene expansion; evolutionary analysis; synteny analysis; orthogroup; divergence
-
Transcription factor WRKY75 maintains auxin homeostasis to promote tomato defense against Pseudomonas syringae
作者:Yang, Minmin;Chen, Chong;Xin, Xin;Dai, Shanshan;Ma, Nana;Wang, Yixuan;Meng, Chen
关键词:
-
N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1
作者:Yu, Mengmeng;Zhang, Yao;Zhang, Li;Wang, Suyan;Liu, Yongzhen;Xu, Zhuangzhuang;Liu, Peng;Chen, Yuntong;Guo, Ru;Meng, Lingzhai;Zhang, Tao;Fan, Wenrui;Qi, Xiaole;Gao, Li;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation