Predicting physiological responses of dairy cows using comprehensive variables

文献类型: 外文期刊

第一作者: Shu, Hang

作者: Shu, Hang;Li, Yongfeng;Jin, Zhongming;Guo, Leifeng;Wang, Wensheng;Shu, Hang;Li, Yongfeng;Bindelle, Jerome;Fang, Tingting;Xing, Mingjie

作者机构:

关键词: Precision livestock farming; Animal welfare; Predictive modeling; Thermal comfort; Interpretability

期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )

ISSN: 0168-1699

年卷期: 2023 年 207 卷

页码:

收录情况: SCI

摘要: Heat stress is increasingly affecting the production, health, and reproduction of dairy cows. Previous studies used limited variables as predictors of physiological responses, and the developed models poorly predict animal re-sponses in evaporatively cooled environments. The aim of this study was to build machine learning models using comprehensive variables to predict physiological responses of dairy cows raised on an actual dairy farm equipped with sprinklers. Four algorithms including random forests, gradient boosting machines, artificial neural networks (ANN), and regularized linear regression were used to predict respiration rate (RR), vaginal temperature (VT), and eye temperature (ET) with 13 predictor variables from three dimensions: production, cow-related, and environmental factors. The classification performance of the predicted values in recognizing individual heat stress states was compared with commonly used thermal indices. The performance on the testing sets shows that the ANN models yielded the lowest root mean squared error for predicting RR (13.24 breaths/min), VT (0.30 degrees C), and ET (0.29 degrees C). The results interpreted with partial dependence plots and Local Interpretable Model-agnostic Explanations show that P.M. measurements and winter calving contributed most to high RR and VT predictions, whereas lying posture, high ambient temperature, and low wind speed contributed most to high ET predictions. When determining the ground-truth heat stress state by the actual RR, the best classification performance was yielded by the predicted RR with an accuracy of 77.7%; when determining the ground-truth heat stress state by the actual VT, the best classification performance was yielded by the predicted VT with an accuracy of 75.3%. This study demonstrates the ability of ANN in predicting physiological responses of dairy cows raised on actual farms with access to sprinklers. Adding more predictors other than meteorological parameters into training could increase predictive performance. Recognizing the heat stress state of individual animals, especially those at the highest risk, based on the predicted physiological responses and their interpretations can inform better heat abatement decisions.

分类号:

  • 相关文献
作者其他论文 更多>>