Physiological and Molecular Response Modifications by Ultraviolet-C Radiation in Plutella xylostella and Its Compatibility with Cordyceps fumosorosea

文献类型: 外文期刊

第一作者: Khan, Muhammad Musa

作者: Khan, Muhammad Musa;Fan, Ze-Yun;Wen, Sang;Wu, Jian-Hui;Qiu, Bao-Li;Khan, Muhammad Musa;Fan, Ze-Yun;Wen, Sang;Wu, Jian-Hui;Qiu, Bao-Li;Sabir, Irfan Ali;Hafeez, Muhammad

作者机构:

关键词: UV-C radiation; virulence; antioxidant enzyme; detoxification enzyme; qRT-PCR; entomopathogenic fungi

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:6.208; 五年影响因子:6.628 )

ISSN:

年卷期: 2022 年 23 卷 17 期

页码:

收录情况: SCI

摘要: Ultraviolet-C (UV-C) radiation significantly impacts living organisms. UV-C radiation can also be used as a pest management tool. Therefore, this study was designed to investigate the effect of UV-C radiation on the physiology and gene expression level of Plutella xylostella, a destructive vegetable pest. Results showed that, after exposure to UV-C radiation for 3, 6, 12, and 24 h, the activity of SOD (superoxide dismutase) and CAT (catalase) of P. xylostella increased, while the activity of PPO (polyphenol oxidase), POD (peroxidase), AChE (acetylcholinesterase), CarE (carboxylesterase), and ACP (acid phosphatase) decreased with increased exposure time. Correlation coefficient analyses indicated that the activity of CAT correlated positively, while PPO and CarE correlated negatively, with exposure time. Gene regulation analysis via qRT-PCR confirmed a significant increase in regulation in CAT, CarE, and PPO-related genes. We also investigated the effect of UV-C exposure on the virulence of Cordyceps fumosorosea against P. xylostella. Here, results indicated that when the fungal treatment was applied to larvae before UV-C radiation, the virulence of C. fumosorosea was significantly reduced. However, this decline in virulence of C. fumosorosea due to UV-C exposure remained only for one generation, and no effect was observed on secondary infection. On the other hand, when larvae were exposed to UV-C radiation before fungal application, the mortality rate significantly increased as the exposure time to UV-C radiation increased. From the current study, it could be concluded that UV-C exposure suppressed the immunity to P. xylostella, which later enhanced the virulence of entomopathogenic fungi. Moreover, the study also suggested that UV irradiation is an effective pest management tool that could be incorporated into pest management strategies, which could help reduce pesticide application, be economically beneficial for the farmer, and be environmentally safe.

分类号:

  • 相关文献
作者其他论文 更多>>