Aspirin Eugenol Ester Alleviates Energy Metabolism Disorders by Reducing Oxidative Damage and Inflammation in the Livers of Broilers Under High-Stocking-Density Stress

文献类型: 外文期刊

第一作者: Guo, Caifang

作者: Guo, Caifang;Zhang, Yi;Bai, Dongying;Zhen, Wenrui;Ma, Penghui;Wang, Ziwei;Zhao, Xiaodie;Ma, Yanbo;Guo, Caifang;Zhang, Yi;Bai, Dongying;Zhen, Wenrui;Ma, Yanbo;Ma, Xiqiang;Xie, Xiaolin;Ma, Yanbo;Ito, Koichi;Zhang, Bingkun;Yang, Yajun;Li, Jianyong

作者机构:

关键词: broilers; AEE; high stocking density; oxidative damage; inflammation; energy metabolism

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 5 期

页码:

收录情况: SCI

摘要: This study aimed to evaluate the effects of aspirin eugenol ester (AEE) on growth performance, oxidative liver damage, inflammation, and liver metabolomics in broilers under high-stocking-density (HSD) stress. A total of 360 broilers were divided into four groups: normal density (ND, 14/m2), high density (HD, 22/m2), ND-AEE (ND + 0.01% AEE), and HD-AEE (HD + 0.01% AEE). HSD decreased total antioxidant capacity, increased malondialdehyde (MDA) levels, and elevated the expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) mRNA, which contributed to the reduced performance of broilers. Specifically, HSD caused abnormalities in linoleic acid metabolism, leading to elevated levels of Prostaglandin E2 (PGE2) and Leukotriene B4 (LTB4) synthesis, which aggravated inflammation, increased liver lipid levels, and impaired ATP production. AEE counteracted the decline in broiler production performance induced by HSD by enhancing total antioxidant capacity, reducing MDA levels, protecting the liver from oxidative damage, and maintaining mitochondrial oxidative phosphorylation. AEE positively regulated the linoleic acid metabolism by promoting the synthesis of gamma-linolenic acid and phosphatidylcholine, which reduced the synthesis of COX-2 and mPGES-1. AEE alleviated the metabolic imbalance caused by HSD stress and enhanced the efficiency of mitochondrial fatty acid oxidation, which reduced excess lipid accumulation in the liver and promoted ATP production. In summary, this study provides strong support for the dietary addition of AEE to alleviate liver oxidative damage, inflammation, and energy metabolism disorders caused by HSD stress.

分类号:

  • 相关文献
作者其他论文 更多>>