Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses
文献类型: 外文期刊
第一作者: Ding, Peiyang
作者: Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Chai, Shujun;Zhang, Gaiping;Zhang, Gaiping
作者机构:
关键词: Mucoadhesive; Thiolated chitosan; Influenza nanovaccine; M2e; Nucleoprotein
期刊名称:CARBOHYDRATE POLYMERS ( 影响因子:11.2; 五年影响因子:10.2 )
ISSN: 0144-8617
年卷期: 2024 年 328 卷
页码:
收录情况: SCI
摘要: Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.
分类号:
- 相关文献
作者其他论文 更多>>
-
Potential Pathogenicity and Genetic Characteristics of a Live-Attenuated Classical Swine Fever Virus Vaccine Derivative Variant
作者:Guo, Zhenhua;Xing, Guangxu;Jin, Qianyue;Lu, Qingxia;Zhang, Gaiping;Wang, Leyi;Wang, Leyi;Zhang, Gaiping;Zhang, Gaiping
关键词:
-
Proteomic analysis reveals the antiviral effects of baicalin on pseudorabies virus
作者:Niu, Qiaoge;Zhang, Gaiping;Niu, Qiaoge;Zhou, Chuanjie;Li, Rui;Guo, Junqing;Qiao, Songlin;Chen, Xin-xin;Zhang, Gaiping;Zhang, Gaiping
关键词:Baicalin; Pseudorabies virus; ROS; F3; NFU1; CEBPB
-
Comparison of meat quality, muscle-fibre characteristics and the Sirt1/AMPK/PGC-1α pathway in different breeds of pigs
作者:Gao, Yi;Li, Zhaohua;Zhang, Qi;Hao, Tong;Liu, Hongliang;Liu, Qingyu;Liu, Lizhai;Zhang, Zhibin;Yu, Yongsheng;Li, Na
关键词:enzyme activity; gene expression; meat quality; muscle fibre; MyHC; pig breed; Sirt1/AMPK/PGC-1 alpha; skeletal muscle
-
Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives
作者:Yao, Wanzi;Zhang, Yifeng;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:Marine peptides; Anti-aging; Preparation; Mechanisms; Oxidative stress; Signaling pathways
-
Identification of the Linear Fc-Binding Site on the Bovine IgG1 Fc Receptor (boFcγRIII) Using Synthetic Peptides
作者:Wang, Ruining;Guo, Junqing;Yang, Jifei;Li, Qingmei;Zhang, Gaiping;Wang, Ruining;Li, Ge;Wang, Xun;Zhang, Gaiping;Zhang, Gaiping
关键词:BoFc gamma RIII; Fc-binding site; bovine IgG1; synthetic peptides
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity
-
Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway
作者:Kong, Zhengjie;Zhang, Yifeng;Guan, Kaifeng;Yao, Wanzi;Kang, Yu;Lu, Xinyi;Zhang, Gaiping;Chen, Xing;Gong, Lele;Wang, Lele;Zhang, Yuhang;Du, Yongkun;Sun, Aijun;Zhuang, Guoqing;Wan, Bo;Zhang, Gaiping;Zhao, Jianguo;Zhang, Gaiping;Zhang, Gaiping
关键词:pseudorabies virus; cGAS-STING; tegument protein US2; TRIM21; immune invasion