GBSSI loss-of-function in potato affects dynamics in starch biosynthesis and breakdown in leaves and alters leaf starch multi-level structure

文献类型: 外文期刊

第一作者: Westberg, Ida

作者: Westberg, Ida;Tian, Yu;Hu, Guangpu;Johansen, Ida Elisabeth;Petersen, Bent Larsen;Guo, Ke;Hu, Yaqi;Khakimov, Bekzod;Blennow, Andreas;Zhong, Yuyue

作者机构:

关键词: Potato; Leaf starch; Starch structure; Starch biosynthesis and breakdown; Amylopectin; Amylose

期刊名称:CARBOHYDRATE POLYMERS ( 影响因子:12.5; 五年影响因子:11.9 )

ISSN: 0144-8617

年卷期: 2025 年 362 卷

页码:

收录情况: SCI

摘要: Starch biosynthesis, breakdown, and multi-scale leaf starch granule structure in the potato variety Wotan with knock-out of the Granular Bound Starch Synthase (GBSS) I gene were assessed. In wild-type, starch in the leaves had compared to the tuber significantly lower amylose content, smaller amylopectin molecules, more amylopectin side chains with a degree of polymerization (DP) of 6-12, fewer amylopectin sidechains (DP 12-24), higher degree of branching, thicker amorphous lamellae, higher crystallinity, higher molecular order, and much smaller granules. Knock-out of GBSSI resulted in reduced leaf starch amylose content and larger amylopectin and amylose molecules, more amylopectin sidechains (DP 6-8 and 12-16), fewer internal chains (DP 18-24), increased branching, thickening of the crystalline lamellae, lowered crystallinity and increased molecular order. Leaf starch content assayed over 24 h with a diurnal rhythm of 16/8 h (light/dark) revealed that the gbssI mutant accumulated leaf starch at a faster rate, while degrading leaf starch at a much slower rate compared to wild-type. This study provides a systematic analysis of the multi-scale structure of leaf starch in potato and is the first study to demonstrate that the loss of GBSSI causes significant structural differences in leaf starch while also affecting leaf starch synthesis and degradation.

分类号:

  • 相关文献
作者其他论文 更多>>