Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
文献类型: 外文期刊
第一作者: Chen, Riqiang
作者: Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
作者机构:
关键词: maize; chlorophyll; radiative transfer model; feature selection; transfer learning
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )
ISSN:
年卷期: 2025 年 15 卷 10 期
页码:
收录情况: SCI
摘要: Leaf chlorophyll content (LCC) serves as a vital biochemical indicator of photosynthetic activity and nitrogen status, critical for precision agriculture to optimize crop management. While UAV-based hyperspectral sensing offers maize LCC estimation potential, current methods struggle with overlapping spectral bands and suboptimal model accuracy. To address these limitations, we proposed an integrated maize LCC estimation framework combining UAV hyperspectral imagery, simulated hyperspectral data, E2D-COS feature selection, deep neural network (DNN), and transfer learning (TL). The E2D-COS algorithm with simulated data was used to identify structure-resistant spectral bands strongly correlated with maize LCC: Big trumpet stage: 418 nm, 453 nm, 506 nm, 587 nm, 640 nm, 688 nm, and 767 nm; Spinning stage: 418 nm, 453 nm, 541 nm, 559 nm, 688 nm, 723 nm, and 767 nm. Combining the E2D-COS feature selection with TL and DNN significantly improves the estimation accuracy: the R2 of the proposed Maize-LCNet model is improved by 0.06-0.11 and the RMSE is reduced by 0.57-1.06 g/cm compared with LCNet-field. Compared to the existing studies, this study not only clarifies the spectral bands that are able to estimate maize chlorophyll, but also presents a high-performance, lightweight (fewer input) approach to achieve the accurate estimation of LCC in maize, which can directly support growth monitoring nutrient management at specific growth stages, thus contributing to smart agricultural practices.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Tissue-specific expression, functional analysis, and polymorphism of the KRT2 gene in sheep horn
作者:Yang, Hao;Shan, Mingzhu;He, Jianning;Yang, Hao;Chu, Mingxing;Zhang, Xiaoxu;Shan, Mingzhu;Lu, Xiaoning;Pan, Zhangyuan;Naominggaowa
关键词:KRT2; Sheep; Horn; SNP; Evolution
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Octenyl succinic anhydride starch enhanced 3D printability of corn starch-based emulsion-filled gels incorporating egg yolk
作者:Zhong, Yuanliang;Lv, Weiqiao;Xiao, Hongwei;Wang, Bo;Li, Bingzheng;Zhao, Dan
关键词:3D printing; Octenyl succinic anhydride; Emulsion gel; Egg yolk; Starch
-
The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1
作者:Zheng, Yan;Zhao, Dan;Lu, Yuan;Liu, Zhihong;Sun, E.;Yu, Hongqiang;Mao, Xia;Cai, Minrui;Zuo, Cunwu;Chen, Zhongjian;Zuo, Cunwu
关键词: