Genome Mining Reveals Biosynthesis of the Antifungal Lipopeptaibols, Texenomycins, through a Hybrid PKS-NRPS System, in the Fungus Mariannaea elegans

文献类型: 外文期刊

第一作者: Jiao, Yang

作者: Jiao, Yang;Ling, Jian;Khan, Raja Asad Ali;Luo, Ning;Li, Zixin;Li, Zeyu;Yang, Yuhong;Zhao, Jianlong;Mao, Zhenchuan;Xie, Bingyan;Li, Yan;Jiao, Yang;Luo, Ning;Bills, Gerald F.

作者机构:

关键词: Mariannaeaelegans; antifungal lipopeptaibols; genome mining; biosynthetic genes; hybrid PKS-NRPSsystem

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.2; 五年影响因子:6.4 )

ISSN: 0021-8561

年卷期: 2025 年 73 卷 1 期

页码:

收录情况: SCI

摘要: Texenomycins are a family of linear lipopeptaibols with a long polyketide side chain at the N-terminus and 21 amino acid residues at the C-terminus, presenting demonstrated potential as antibiotics against plant fungal pathogens. In this study, texenomycins were identified and isolated from the fungus Mariannaea elegans strain TTI-0396 and showed effective antifungal properties against two plant pathogens Colletotrichum lagenarium and Botrytis cinerea. Through analysis of the whole-genome data of M. elegans strain TTI-0396, we discovered a hybrid PKS-NRPS system with the polyketide synthase (PKS: TexQ), thioesterase (TexO), acyl-CoA ligase (TexI), and three nonribosomal peptide synthetases (NRPSs: TexG, TexJ, TexV) in the tex gene cluster that were proposed to be responsible for the biosynthesis of texenomycins and another related lipopeptaibol, lipohexin. The functions of six key genes (texQ, texO, texI, texG, texJ, and texV) in the hybrid PKS-NRPS system were verified by gene deletion experiments, and five genes (texQ, texO, texI, texG, and texV) were confirmed to be responsible for the biosynthesis of texenomycins, while four genes (texQ, texO, texI, and texJ) were involved in the biosynthesis of lipohexin. Furthermore, the function of one transcription factor gene (texR), which enhanced the production of texenomycins by regulating the key genes in the tex gene cluster, was also demonstrated through gene deletion and overexpression experiments. Finally, a hypothetical scheme for texenomycins and lipohexin biosynthesis assembly is proposed. The elucidation of this intricate hybrid PKS-NRPS system has significantly deepened our comprehension of the mechanisms underlying the generation and chemical diversity of fungal lipopeptaibol natural products, offering a promising avenue for future research and potential applications in fungicidal disease control in agriculture.

分类号:

  • 相关文献
作者其他论文 更多>>