Deep learning-based regression of food quality attributes using near-infrared spectroscopy and hyperspectral imaging: A review

文献类型: 外文期刊

第一作者: Xiao, Yuxin

作者: Xiao, Yuxin;Qi, Hengnian;Zhang, Chu;Zhou, Lei;Zhao, Yiying;Pu, Yuanyuan

作者机构:

关键词: Deep learning for spectral data analysis; Non-destructive food quality prediction; Near-infrared spectroscopy and hyperspectral imaging regression models; Spectral feature extraction; Transfer learning; Data augmentation

期刊名称:FOOD CHEMISTRY ( 影响因子:9.8; 五年影响因子:9.7 )

ISSN: 0308-8146

年卷期: 2025 年 493 卷

页码:

收录情况: SCI

摘要: Near-infrared (NIR) spectroscopy and hyperspectral imaging (HSI) are two popular non-destructive tools for food quality and safety inspection. For food quality attributes quantification, the key is to develop regression models to link the features (spectral, spatial and their fusion) and the quality attributes. In addition to conventional machine learning methods, deep learning-based regression has proved to be a promising and advantageous approach to quantify the quality attributes. This review presents a comprehensive summary of recent advances in applying deep learning algorithms for quantifying food quality attributes using NIR spectroscopy and HSI. Deep learning regression algorithms are briefly introduced and compared with conventional data analysis strategies for regression. Furthermore, the strategies that help to fully reveal the advantages of deep learning are highlighted. The challenges and future perspectives are also discussed. This review provides a comprehensive understanding of the application of deep learning in food quality attribute quantification.

分类号:

  • 相关文献
作者其他论文 更多>>