Grazing regulates temperate grassland multidimensional stability facing extreme winter snowfall reductions by influencing below-ground bud density
文献类型: 外文期刊
第一作者: Guo, Tongtian
作者: Guo, Tongtian;Guo, Meiqi;Yang, Gaowen;Liu, Nan;Zhang, Yingjun;Guo, Tongtian;Guo, Meiqi;Yang, Gaowen;Liu, Nan;Zhang, Yingjun;Zhang, Hao;Xu, Hengkang;Jing, Xin
作者机构:
关键词: above-ground net primary productivity; ecosystem stability; extreme climate event; grassland; grazing management; plant bud density; snowfall reduction
期刊名称:JOURNAL OF ECOLOGY ( 影响因子:5.6; 五年影响因子:6.5 )
ISSN: 0022-0477
年卷期: 2025 年 113 卷 4 期
页码:
收录情况: SCI
摘要: Global climate changes increased the frequency of snowfall reduction events in the Northern Hemisphere, consequently suppressing plant productivity. Grazing, the most widespread use of grasslands, influences productivity in response to climatic extremes by shaping community structure. Since grazing could disrupt normal plant growth and reproduction, rest from grazing at various stages of the growing season may have different effects on above- and below-ground community properties. However, how grazing or grazing rest at different stages of growing season affects grassland stability when facing extreme snowfall reduction remains unclear. We investigated the multidimensional stability (resistance, resilience, recovery and temporal stability) of above-ground net primary productivity (ANPP) under a time-dependent strategic-rest grazing practice (rest in early, peak and late growing stage) experiment, during which a natural extreme snowfall reduction event occurred. We also assessed plant richness, dominance, asynchrony, key functional group stability and below-ground bud density to explore the mechanisms underlying multidimensional stability. We found that extreme snowfall reduction significantly decreased grassland ANPP under all grazing practices. However, grazing with short-term rest during the peak growing stage significantly enhanced ANPP, improved resistance and recovery from extreme snowfall reduction, and consequently greatly improved the temporal stability compared to continuous grazing. In contrast, the grazing rest during the early and late growing stages did not improve temporal stability of ANPP. Meanwhile, resilience was not affected by grazing practices. The benefits of peak rest primarily arise from allowing the formation of sufficient below-ground buds before and after extreme events. Notably, changes in community properties (such as diversity or asynchrony) resulting from the rest were not correlated with resistance and recovery. Additionally, the increases in grass bud density from the peak rest indirectly contributed to temporal stability by enhancing the stability of perennial rhizome grass and preserving community composition. Synthesis. These findings underscore the essential role of plant below-ground buds in sustaining stable grassland productivity in response to snowfall reduction and also suggest that grassland management strategies should account for the protection of plant asexual reproductive organs, which contributes to grassland sustainability in the face of future climate change. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)((sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic))(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(ANPP)(sic)(sic)(sic)(sic)(sic)(sic)(sic)((sic)(sic)(sic),(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic),(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)ANPP.(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)ANPP, (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)ANPP(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
分类号:
- 相关文献
作者其他论文 更多>>
-
Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance
作者:Yang, Fayu;Wei, Nan;Cai, Shuo;Liu, Jing;Zhang, Hao;Shang, Lu;Wang, Mi;Liu, Yingchun;Zhang, Lifang;Fei, Chenzhong;Tong, Wu;Liu, Changlong;Tong, Guangzhi;Gu, Feng;Yang, Fayu;Wei, Nan;Cai, Shuo;Liu, Jing;Zhang, Hao;Shang, Lu;Wang, Mi;Liu, Yingchun;Zhang, Lifang;Fei, Chenzhong;Gu, Feng;Yang, Fayu;Lan, Qingping;Kuang, Ersheng;Zheng, Bo
关键词:herpesviruses; CRISPR; host-directed therapy; CLC-2; DIDS
-
Untargeted Metabolomics Reveals Key Differences Between Yak, Buffalo, and Cow Colostrum Based on UHPLC-ESI-MS/MS
作者:Wang, Yuzhuo;Li, Changhui;Zhang, Hao;Huang, Jiaxiang;Zeng, Qingkun;Li, Ling;Yang, Pan;Wang, Pengjie;Ren, Fazheng;Zhang, Hao;Chu, Min;Luo, Jie;Ren, Fazheng;Zhang, Hao
关键词:untargeted metabolomics; yak colostrum; buffalo colostrum; cow colostrum; specific milk composition; colostrum biomarkers
-
Transcriptomic insight into the underlying mechanism of induced molting on reproductive remodeling, performance and egg quality in laying hen
作者:Ma, Pengyun;Chen, Jilan;Zhang, Xiaoke;Xu, Xinying;Ma, Zhong;Li, Yunlei;Ma, Pengyun;Xue, Fuguang;Zhang, Hao;Wu, Yan;Li, Ling;Qu, Yuanqi
关键词:Induced molting; Reproductive remodeling; Egg quality; Transcriptomic analysis; Laying hen
-
Sulfur dioxide enhances the resistance of postharvest grape berries to gray mold through hydrogen peroxide signaling
作者:Xing, Shijun;Tian, Quanming;Zhang, Yu;Zheng, Yige;Yuan, Yuyao;Zhang, Zheng;Zhang, Hao;Wei, Jia;Wu, Bin
关键词:Postharvest grape berries; Botrytis cinerea resistance; H 2 O 2 signaling; Antioxidant system
-
Snow Interacts With Defoliation Height to Drive Grassland Sustainability via Grass Biomass Maintenance
作者:Xu, Hengkang;Liu, Nan;Yang, Gaowen;Zhang, Hao;Zhang, Yingjun;Xu, Hengkang;Liu, Nan;Zhang, Yingjun;Badgery, Warwick B.
关键词:Community assembly; Grassland utilization; Soil microbiome; Winter climate change; Winter snow cover; beta-Diversity
-
Characterization and comparison of metabolites in colostrum from yaks, buffaloes, and cows based on UPLC-QTRAP-MS metabolomics
作者:Zhang, Xueyan;Li, Changhui;Zhang, Hao;Huang, Jiaxiang;Zeng, Qingkun;Li, Ling;Yang, Pan;Wang, Pengjie;Zhang, Hao;Chu, Min;Luo, Jie;Zhang, Hao
关键词:UPLC-MS; Inositol; Carnitine; Primary bile acids; Multivariate statistical analysis; Targeted metabolomics
-
Caffeic acid improves biocontrol effect of Pantoea jilinensis D25 against tomato gray mold
作者:Zheng, Lining;Zheng, Shuanglan;Wang, Shengyi;Han, Zhe;Gao, Ao;Zhang, Hao;Wu, Xian;Pan, Hongyu
关键词:
Pantoea jilinensis D25; tomato;Botrytis cinerea ; biocontrol effect; caffeic acid