Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas

文献类型: 外文期刊

第一作者: Singh, Pratiksha

作者: Singh, Pratiksha;Singh, Rajesh Kumar;Li, Hai-Bi;Sharma, Anjney;Verma, Krishan K.;Lakshmanan, Prakash;Li, Yang-Rui;Singh, Rajesh Kumar;Sharma, Anjney;Verma, Krishan K.;Yang, Li-Tao;Li, Yang-Rui;Guo, Dao-Jun;Solanki, Manoj Kumar;Upadhyay, Sudhir K.;Li, Yang-Rui

作者机构:

关键词: Defense-related genes; nitrogen-fixation; phytohormones; Pseudomonas spp; sugarcane

期刊名称:BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS ( 影响因子:3.2; 五年影响因子:4.7 )

ISSN: 0264-8725

年卷期: 2023 年

页码:

收录情况: SCI

摘要: Diazotrophic microorganisms are free-living groups of organisms that can convert atmospheric nitrogen (N) into bioavailable nitrogen for plants, which increases crop development and production. The purpose of the current study was to ascertain how diazotrophic plant growth promoting (PGP) Pseudomonas strains (P. koreensis CY4 and P. entomophila CN11) enhanced nitrogen fixation, defense activity, and PGP attributes of sugarcane varieties; GT11 and GxB9. A 15N isotope-dilution study was conducted to confirm the sugarcane strains' capacity to fix nitrogen, and the results indicated that between 21 to 35% of plant, nitrogen is fixed biologically by selected rhizobacteria. In comparison to the control, after 30, 60, and 90 days, both CY4 and CN11 strains significantly increased defense-related enzymes (catalase, peroxidase, phenylalanine ammonia-lyase, superoxide dismutase, glucanase, and chitinase) and phytohormones (abscisic acid, ABA, cytokinin, etc.) in GT11 and GXB. Additionally, the expression of SuCHI, SuGLU, SuCAT, SuSOD, and SuPAL genes was found to be elevated in Pseudomonas strains inoculated plants using real-time quantitative polymerase chain reaction (RT-qPCR). Both bacterial strains increased all physiological parameters and chlorophyll content in sugarcane plants more than their control. The effects of P. koreensis CY4 and P. entomophila CN11 strains on sugarcane growth promotion and nitrogen fixation under greenhouse conditions are described here for the first time systematically. The results of confirmation studies demonstrated that P. koreensis CY4 and P. entomophila are PGP bacterial strains with the potential to be employed as a biofertilizer for sugarcane growth, nitrogen nutrient absorption, and reduced application of chemical nitrogenous fertilizers in agricultural fields.

分类号:

  • 相关文献
作者其他论文 更多>>