Application of Machine Learning to Tree Species Classification Using Active and Passive Remote Sensing: A Case Study of the Duraer Forestry Zone
文献类型: 外文期刊
第一作者: Rina, Su
作者: Rina, Su;Ying, Hong;Shan, Yu;Liu, Yang;Li, Rong;Rina, Su;Ying, Hong;Shan, Yu;Liu, Yang;Li, Rong;Du, Wala;Du, Wala;Deng, Dingzhu
作者机构:
关键词: active-passive remote sensing; canopy height model (CHM); classification; random forest (RF)
期刊名称:REMOTE SENSING ( 影响因子:5.0; 五年影响因子:5.6 )
ISSN:
年卷期: 2023 年 15 卷 10 期
页码:
收录情况: SCI
摘要: The technology of remote sensing-assisted tree species classification is increasingly developing, but the rapid refinement of tree species classification on a large scale is still challenging. As one of the treasures of ecological resources in China, Arxan has 80% forest cover, and tree species classification surveys guarantee ecological environment management and sustainable development. In this study, we identified tree species in three samples within the Arxan Duraer Forestry Zone based on the spectral, textural, and topographic features of unmanned aerial vehicle (UAV) multispectral remote sensing imagery and light detection and ranging (LiDAR) point cloud data as classification variables to distinguish among birch, larch, and nonforest areas. The best extracted classification variables were combined to compare the accuracy of the random forest (RF), support vector machine (SVM), and classification and regression tree (CART) methodologies for classifying species into three sample strips in the Arxan Duraer Forestry Zone. Furthermore, the effect on the overall classification results of adding a canopy height model (CHM) was investigated based on spectral and texture feature classification combined with field measurement data to improve the accuracy. The results showed that the overall accuracy of the RF was 79%, and the kappa coefficient was 0.63. After adding the CHM extracted from the point cloud data, the overall accuracy was improved by 7%, and the kappa coefficient increased to 0.75. The overall accuracy of the CART model was 78%, and the kappa coefficient was 0.63; the overall accuracy of the SVM was 81%, and the kappa coefficient was 0.67; and the overall accuracy of the RF was 86%, and the kappa coefficient was 0.75. To verify whether the above results can be applied to a large area, Google Earth Engine was used to write code to extract the features required for classification from Sentinel-2 multispectral and radar topographic data (create equivalent conditions), and six tree species and one nonforest in the study area were classified using RF, with an overall accuracy of 0.98, and a kappa coefficient of 0.97. In this paper, we mainly integrate active and passive remote sensing data for forest surveying and add vertical data to a two-dimensional image to form a three-dimensional scene. The main goal of the research is not only to find schemes to improve the accuracy of tree species classification, but also to apply the results to large-scale areas. This is necessary to improve the time-consuming and labor-intensive traditional forest survey methods and to ensure the accuracy and reliability of survey data.
分类号:
- 相关文献
作者其他论文 更多>>
-
Design and Performance Analysis of a Sunflower Cutting Table Based on the Principle of Manual Disk Pick-Up
作者:Li, Bin;Gao, Xiaolong;Chen, Xuegeng;Li, Bin;Liu, Yang;Wang, Shiguo;Dong, Yuncheng
关键词:harvesting machinery; seed loss; response surface analysis; parameter optimization
-
Mapping Maize Planting Densities Using Unmanned Aerial Vehicles, Multispectral Remote Sensing, and Deep Learning Technology
作者:Shen, Jianing;Hu, Jingyu;Wang, Jian;Shu, Meiyan;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Zhao, Meng;Liu, Yang;Niu, Qinglin;Niu, Qinglin
关键词:maize planting density; object detection; machine learning; vegetation index; YOLO; GLCM
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Genomic insights into the seawater adaptation in Cyprinidae
作者:Wang, Ying;Zhang, Xuejing;Xiong, Fei;Zhou, Min;Wang, Jing;Wang, Cheng;Qian, Yuting;Meng, Minghui;Chen, Wenjun;Ding, Zufa;Yu, Dan;Liu, Yang;He, Shunping;Yang, Liandong;Wang, Ying;He, Shunping;Yang, Liandong;Wang, Cheng;Qian, Yuting;Chen, Wenjun;Ding, Zufa;Yu, Dan;Liu, Yang;Chang, Yumei;Wang, Ying;Yang, Liandong
关键词:Far Eastern dace; Migratory; Osmoregulation; Seawater adaptation
-
Paeonol promotes longevity and fitness in Caenorhabditis elegans through activating the DAF-16/FOXO and SKN-1/Nrf2 transcription factors
作者:Li, Rong;Yi, Qingping;Wang, Jinsong;Miao, Yuanxin;Chen, Qingchan;Xu, Yan;Tao, Mingfang
关键词:Caenorhabditis elegans; Anti-aging; Paeonol; Stress resistance; IIS pathway
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Effects of Long-Term Cryopreservation on the Transcriptomes of Giant Grouper Sperm
作者:Ding, Xiaoyu;Tian, Yongsheng;Qiu, Yishu;Duan, Pengfei;Wang, Xinyi;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna
关键词:Epinephelus lanceolatus; sperm freezing damage; transcriptome analysis