Simulation of high-resolution mid-infrared (3-5 mu m) images using an atmosphere radiative transfer analytic model

文献类型: 外文期刊

第一作者: Yang, Guijun

作者: Yang, Guijun;Huang, Wenjiang;Wang, Jihua;Yang, Guijun;Liu, Qinhuo;Liu, Qiang;Yang, Guijun;Liu, Qinhuo;Liu, Qiang

作者机构:

期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )

ISSN: 0143-1161

年卷期: 2009 年 30 卷 22 期

页码:

收录情况: SCI

摘要: Futuremid-infrared satellite missions exploring the Earth will feature advanced high spatial resolution and directional imaging instruments. Consistent end-to-end simulation of them is an important task, and is sometimes the only way to adapt and optimize a sensor and its observation conditions, to choose and test algorithms for data processing, to estimate errors and to evaluate the capabilities of the whole sensor system. However, contrary to other wavelength ranges, the mid-infrared is highly dependent on atmospheric scattering and emission. Therefore, simulation of atmospheric radiative transfer for remote sensing images will remain a challenging task, because few studies on this topic include a full treatment of atmospheric effects. With a given resolution and directional capabilities of the instrument, and combining with land surface temperature and emissivity data obtained from airborne imagery, TOA (top of atmosphere) radiance images have been simulated pixel by pixel, coupling the atmospheric radiative transfer analytic model extended from MODTRAN4 and the atmospheric adjacency effect model derived from point spread function (for atmospheric directional and adjacency effect). In this way, all major scattering and emission contributions of atmosphere were considered. Based on different atmospheric conditions and geometrical relations between the scene, the Sun and the sensor, simulated TOA radiance images were produced according to simulated workflows, 10-m spatial resolution and a spectral range of 3.5-3.9 mu m. Analysis of results indicates that the analytic model and adjacency effect model are more suitable for mid-infrared imaging simulation than other existing models. This paper describes the principle of the two models, the applied methodology, the set-up of the actual image simulations, and then discusses the final results obtained.

分类号:

  • 相关文献
作者其他论文 更多>>