Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching

文献类型: 外文期刊

第一作者: Xie, Yurong

作者: Xie, Yurong;Liu, Yang;Ma, Mengdi;Wang, Baobao;Zhou, Qin;Zhao, Yongping;Zhao, Binbin;Wei, Hongbin;Wang, Haiyang;Wang, Haiyang

作者机构:

期刊名称:NATURE COMMUNICATIONS ( 影响因子:14.919; 五年影响因子:15.805 )

ISSN: 2041-1723

年卷期: 2020 年 11 卷 1 期

页码:

收录情况: SCI

摘要: Branching/tillering is an important parameter of plant architecture and is tightly regulated by both internal factors (such as plant hormones) and external factors (such as light conditions). How the various signaling pathways converge to coordinately regulate branching is not well understood. Here, we report that in Arabidopsis, FHY3 and FAR1, two homologous transcription factors essential for phytochrome A-mediated light signaling, and SMXL6/SMXL7/SMXL8, three key repressors of the strigolactone (SL) signaling pathway, directly interact with SPL9 and SPL15 and suppress their transcriptional activation of BRC1, a key repressor of branching, thus promoting branching. In addition, FHY3 and FAR1 also directly up-regulate the expression of SMXL6 and SMXL7 to promote branching. Simulated shade treatment reduces the accumulation of FHY3 protein, leading to increased expression of BRC1 and reduced branching. Our results establish an integrated model of light and SL coordinately regulating BRC1 expression and branching through converging at the BRC1 promoter. In plants, branching is regulated by both hormones and external cues such as light. Here the authors show that in Arabidopsis, the phytochrome A-signaling components FHY3 and FAR1, and SMXL proteins that repress strigolactone signaling, both interact with SPL proteins to control expression of the branching regulator BRC1.

分类号:

  • 相关文献
作者其他论文 更多>>