Synergistic enhancement effect of MoO3@Ag hybrid nanostructures for boosting selective detection sensitivity

文献类型: 外文期刊

第一作者: Shi, Tengda

作者: Shi, Tengda;Liang, Pei;Zhang, Xiubing;Shu, Haibo;Huang, Jie;Zhang, De;Yu, Zhi;Xu, YongQuan

作者机构:

关键词: MoO3@Ag hybrid nanostructures; SERS; FDTD; DFT; Selective SERS enhancement effect

期刊名称:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY ( 影响因子:4.098; 五年影响因子:3.464 )

ISSN: 1386-1425

年卷期: 2020 年 241 卷

页码:

收录情况: SCI

摘要: An ex situ method was used to synthesize noble metals and metal oxide composite materials, due to the selective adsorption properties of metal oxides, the adsorption of different probe molecules by this composite structure had been studied. In the ex situ approach, we use (3-aminopropyl) diethoxy methylsilane (ATES) as a coupling agent which is easy for noble metal nanoparticles deposited on metallic oxide nanomaterials. The Raman scattering (SERS) substrate of 1D MoO3 nanowires (MoO3-NWs) @Ag nanoparticles (Ag-NPs) hybrid surface had been fabricated. Several parameters are presented in the following which influences the morphology of self-assembly and SERS activity: (i) coupling agent of ATES, (ii) ATES content (iii) Ag-NPs content. The finite difference time do main (FDTD) method is to explain the enhancement mechanism distribution of the hybrid substrate. Different probe molecules (R6G, Methylene Blue, Crystal Violet, and 4-ATP) have been adsorbed for SERS tests. Improved principle component analysis (PCA) is adopted to obtain the minimum detection limit of probe molecules. Through the DFT calculation, different absorption strengths between the target molecules and the MoO3(010) surface have been illustrated, which is also the main reason for the selective enhancement effect of MoO3@Ag hybrid nanostructures. This paper might propose a method to prepare such enhancement substrate based on the selective absorption properties of oxide semiconductors. (C) 2020 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献
作者其他论文 更多>>