Hydroxymethylbilane synthase (HMBS) gene-based endogenous internal control for avian species
文献类型: 外文期刊
第一作者: Wang, Yaoyao
作者: Wang, Yaoyao;Zhang, Jilei;Li, Min;Shen, Qiuping;Yang, Yi;Wei, Lanjing;Zhang, Yuanyuan;Peng, Daxin;Ye, Jianqiang;Wang, Chengming;Patrick, Kelly;Gong, Jiansen;Xu, Bu;Poudel, Anil;Wang, Chengming
作者机构:
关键词: Endogenous internal control; Birds; PCR; HMBS
期刊名称:AMB EXPRESS ( 影响因子:3.298; 五年影响因子:3.427 )
ISSN: 2191-0855
年卷期: 2020 年 10 卷 1 期
页码:
收录情况: SCI
摘要: With PCR becoming one of the most important and widely-used diagnostic tools for infectious diseases of poultry, an urgent need has developed for an endogenous internal control (EIC) that monitors the quality and quantity of poultry DNA in test samples. In this study we developed a SYBR-qPCR to target the poultry homolog of the hydroxymethylbilane synthase (HMBS) gene as an EIC for avian species. The avian HMBS-based qPCR was very sensitive, detecting one HMBS gene copy in a 20 mu L reaction, and is highly specific for avian species. It amplified DNA from 11 organs and tissues of chickens showing it can be used as an EIC on a large variety of samples. The application of the established EIC on clinically and experimentally infected samples demonstrated that false negativity and result variations could result from samples being collected using different operators, techniques, preservatives, and storage times. The high sensitivity and specificity of the avian HMBS-based qPCR, its ability to quantify DNAs extracted from a wide range of tissues and poultry species along with its usefulness in reducing false negativity in PCR results associated with inadequate sampling and storage degradation makes it an ideal EIC for poultry DNA and RNA PCR diagnostics. The study also highlights the importance of appropriate sampling and storage of samples in ensuring accuracy of molecular diagnostic testing.
分类号:
- 相关文献
作者其他论文 更多>>
-
Analysis of the beneficial effects of prior soybean cultivation to the field on corn yield and soil nitrogen content
作者:Yan, Chao;Yang, Yi;Shan, Fuxin;Lyu, Xiaochen;Yan, Shuangshuang;Wang, Chang;Ma, Chunmei;Song, Junming;Song, Qiulai
关键词:rotation; straw return; corn yield; nitrogen fractions; N-15-labeled
-
Maize actin depolymerizing factor 1 ( ZmADF1 ) negatively regulates pollen development
作者:Lv, Guihua;Wu, Zhengxin;Li, Xiangnan;Wang, Tingzheng;Chen, Jianjian;Liu, Lei;Zhang, Yuanyuan;Li, Yunfeng;Zhang, Yahui;Ren, Wenchuang
关键词:Actin depolymerizing factor 1; Overexpression; Gene editing; Maize; Pollen development
-
A highly susceptible hACE2-transgenic mouse model for SARS-CoV-2 research
作者:Liu, Gang;Zhang, Min;Han, Xuelian;Wei, Yuwei;Sun, Yali;Cao, Xiangwen;Wang, Yuan;Li, Min;Zhao, Guangyu;Yin, Qi;Sun, Yansong;Wu, Baolei;Zhang, Cheng;Guo, Zhendong;Zhang, Cheng;Guo, Zhendong;Wang, Yan;Li, Li;Wang, Rongjuan;Li, Yalan;Sun, Yali;Cao, Xiangwen;Zhao, Guangyu;Ke, Yuehua
关键词:ACE2; inflammatory response; lung injury; mouse model; SARS-CoV-2
-
Nitrogen Fertilizers Affect Microbial Hitchhiking to the Plant Roots
作者:Liu, Zhibin;Xia, Qini;Wang, Ziyuan;Yang, Kexin;Chen, Dixu;Wei, Jiahong;Li, Xufeng;Yang, Yi;Cai, Jing;Chen, Cun;Liu, Chao;Tan, Xiao;Liu, Chao;Tan, Xiao;Chang, Wei;Li, Zhi;Yang, Liang
关键词:microbial hitchhiking; rhizosphere bacteria; nitrogen fertilizer; Bacillus
-
Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture
作者:Charagh, Sidra;Hui, Suozhen;Wang, Jingxin;Zhou, Liang;Xu, Bo;Zhang, Yuanyuan;Sheng, Zhonghua;Tang, Shaoqing;Hu, Shikai;Hu, Peisong;Raza, Ali
关键词:
-
Nodakenin Ameliorates Ovariectomy-Induced Bone Loss by Regulating Gut Microbiota
作者:Liu, Chunxiao;Wang, Zijiao;Li, Yueyao;Zhang, Yuanyuan;Li, Guangyu;Liu, Chunxiao;Chen, Jingyue
关键词:osteoporosis; nodakenin; gut microbiota; intestinal barrier; metabolomics
-
An engineered Pichia pastoris platform for the biosynthesis of silk-based nanomaterials with therapeutic potential
作者:Tian, Ernuo;Yang, Yi;Zhou, Zhihua;Tian, Ernuo;Shen, Xiao;Xiao, Meili;Zhu, Zhihua;Yan, Xing;Wang, Pingping;Zou, Gen;Zhou, Zhihua;Tian, Ernuo;Xiao, Meili;Zhou, Zhihua;Zou, Gen
关键词:Pichia pastoris; Silk fibroin; Secretion; Nanomaterials; Nanoparticles; Nanofibrils