The beta-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis
文献类型: 外文期刊
第一作者: Wang, Qiongshan
作者: Wang, Qiongshan;Bie, Shu;Wang, Qiongshan;Du, Xueqiong;Tu, Lili;Zhang, Na;Yang, Xiyan;Zhang, Xianlong;Zhou, Ying;Xie, Lijuan;Xiao, Shi
作者机构:
关键词: beta-ketoacyl-CoA synthase; cold stress; cotton; Gossypium hirsutum; jasmonic acid; lipid; RNA-seq
期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )
ISSN: 0022-0957
年卷期: 2020 年 71 卷 18 期
页码:
收录情况: SCI
摘要: Cold stress is a key environmental factor that affects plant development and productivity. In this study, RNA-seq in cotton following cold-stress treatment resulted in the identification of 5239 differentially expressed genes (DEGs) between two cultivars with differing sensitivity to low temperatures, among which GhKCS13 was found to be involved in the response. Transgenic plants overexpressing GhKCS13 showed increased sensitivity to cold stress. KEGG analysis of 418 DEGs in both GhKCS13-overexpressing and RNAi lines after treatment at 4 degrees C indicated that lipid biosynthesis and linoleic acid metabolism were related to cold stress. ESI-MS/MS analysis showed that overexpression of GhKCS13 led to modifications in the composition of sphingolipids and glycerolipids in the leaves, which might alter the fluidity of the cell membrane under cold conditions. In particular, differences in levels of jasmonic acid (JA) in GhKCS13 transgenic lines suggested that, together with lysophospholipids, it might mediate the cold-stress response. Our results suggest that overexpression of GhKCS13 probably causes remodeling of lipids in the endoplasmic reticulum and biosynthesis of lipid-derived JA in chloroplasts, which might account for the increased sensitivity to cold stress in the transgenic plants. Complex interactions between lipid components, lipid signaling molecules, and JA appear to determine the response to cold stress in cotton.
分类号:
- 相关文献
作者其他论文 更多>>
-
Gene expression profiles of Chinese medaka ( Oryzias sinensis ) primary hepatocytes in response to estrone (E1 ), 17 i3-estradiol (E2 ) and estriol (E3 )
作者:Wang, Yue;Lu, Junhui;Xie, Zhongtang;Huai, Narma;Zhang, Kailun;Zhou, Ying;Reze, Yilihamu;Li, Xiqing;Zhang, Zhaobin;Zhu, Hua
关键词:Oryzias sinensis; Primary hepatocytes; Natural estrogens; Vitellogenin; toxicogenomics
-
Deficit irrigation combined with a high planting density optimizes root and soil water-nitrogen distribution to enhance cotton productivity in arid regions
作者:Wu, Fengquan;Tang, Qiuxiang;Wu, Fengquan;Cui, Jianping;Tian, Liwen;Guo, Rensong;Wang, Liang;Zheng, Zipiao;Zhang, Na;Lin, Tao;Zhang, Yanjun
关键词:Root system; Soil water; Soil nitrate nitrogen; Water productivity
-
Effects of dietary microbial protease on growth performance, nutrient apparent digestibility, hepatic antioxidant capacity, protease activities and intestinal microflora in juvenile genetically improved farmed tilapia, Oreochromis niloticus
作者:Wu, Jianjun;Wang, Qijun;Zhang, Chengjie;Fu, Dabo;Xu, Li;Zhou, Ying;Yu, Ting;Liu, Wei;Jiang, Ming;Wu, Jinping;Wu, Jinping
关键词:Different proteases; Growth performance; Apparent digestibility; Protease activities; Intestine microbiota
-
Evaluation of physiological changes in sweetpotato (Ipomoea batatas) tuberous root under normoxia high-CO2 conditions
作者:Xue, Zhichao;Chen, Lu;Chen, Chen;Li, Yongxin;Yang, Huqing;Chen, Cunkun;Zhang, Na;Chen, Cunkun;Zhang, Na;Chen, Cunkun;Zhang, Na
关键词:Sweetpotato; High-CO2 injury; Stomata; Ethanol metabolism; RNA-seq
-
Effect of ozone treatment on the decay and cell wall metabolism during the postharvest storage of cantaloupe
作者:Peng, Xuyang;Bai, Yu;Hu, Yunfeng;Dong, Chenghu;Zhang, Na;Zheng, Pufan;Ji, Haipeng;Yu, Jinze;Chen, Cunkun;Ban, Zhaojun
关键词:Cantaloupe; Ozone; Fusarium; Cell wall metabolism; Postharvest quality
-
Effects of inhaled fine particulate matter on the lung injury as well as gut microbiota in broilers
作者:Zhou, Ying;Xu, Bin;Wang, Linyi;Sun, Quanyou;Zhang, Chaoshuai;Li, Shaoyu
关键词:particulate matter; gut microbiota; gut -lung axis; lung injury; broiler
-
CsHSFA1d Promotes Drought Stress Tolerance by Increasing the Content of Raffinose Family Oligosaccharides and Scavenging Accumulated Reactive Oxygen Species in Cucumber
作者:Dong, Danhui;Zhang, Jialong;Deng, Qilin;Xia, Pingxin;Li, Ping;Jia, Congyang;Zhao, Bing;Zhang, Na;Guo, Yang-Dong;Qi, Chuandong
关键词:Cucumber; Drought; Galactinol synthase; Heat shock transcription factor; Raffinose synthase