Enhancing soil profile analysis with soil spectral libraries and laboratory hyperspectral imaging
文献类型: 外文期刊
第一作者: Zhou, Yuwei
作者: Zhou, Yuwei;Li, Shuo;Biswas, Asim;Hong, Yongsheng;Chen, Songchao;Shi, Zhou;Chen, Songchao;Hu, Bifeng;Guo, Yan;Zhou, Yuwei;Guo, Yan;Li, Shuo
作者机构:
关键词: Soil organic carbon; Soil spectral library; Local; Hyperspectral imaging; Profile mapping
期刊名称:GEODERMA ( 影响因子:6.6; 五年影响因子:7.3 )
ISSN: 0016-7061
年卷期: 2024 年 450 卷
页码:
收录情况: SCI
摘要: Soil visible-near-infrared (vis-NIR) spectroscopy offers a rapid, uncontaminated, and cost-efficient method for estimating physicochemical properties such as soil organic carbon (SOC). The development of soil spectral libraries (SSLs) and localized modeling methods has significantly improved the selection of appropriate modeling sets from SSLs for soil analysis. Nevertheless, most studies assume that the SSLs sufficiently cover the target samples for prediction. This study challenges this assumption by investigating the feasibility of using an SSL to predict SOC accurately in a local area when the dataset to be predicted (156,800 samples) vastly exceeds the SSL capacity (3755 samples). We utilized 1-meter-deep whole-soil profile and employed spectral similarity and continuum-removal (SS-CR) calculation to construct a Local dataset from the SSL, with a Global subset serving as a baseline for comparison. The effectiveness of partial least-squares regression (PLSR) and random forest (RF) algorithms in establishing quantitative relationships between spectra and SOC content was evaluated. Our results demonstrated that the Local model, with significantly fewer samples (1116), achieved higher predictive accuracy than the Global model. Both Global (R-2 = 0.80, RMSE = 0.74 %) and Local (R-2 = 0.83, RMSE = 0.75 %) models, developed using the RF algorithm, not only exhibited excellent accuracy but also enabled detailed and cost-effective characterization of the spatial distribution of SOC. Thus, leveraging SSLs enhances the cost-efficiency and predictive capacity of vis-NIR spectral analysis, particularly in handling large datasets at a local scale, underscoring the value of localized approaches in soil spectroscopy.
分类号:
- 相关文献
作者其他论文 更多>>
-
Data-driven strategies to mitigate greenhouse gas emissions intensity while sustaining global rice production
作者:Wang, Chong;Dai, Hancheng;Luo, Ning;Chu, Qingquan;Liu, Jiangang;Fang, Yanru;Qi, Zhiming;Li, Shuo;Gao, Zhenzhen;Feng, Yupeng
关键词:Greenhouse gas emission; Rice yield; Management strategy; Spatial pattern; Global assessment; Greenhouse gas emission; Rice yield; Management strategy; Spatial pattern; Global assessment
-
Flow Velocity Modulates Growth, Oxidative Stress, and Transcriptomic Responses in Spotted Sea Bass (Lateolabrax maculatus)
作者:Li, Shuo;Wang, Qian;Liu, Baoliang;Shao, Changwei;Li, Shuo;Liu, Yuyan;Wang, Qian;Zhu, Zhiwen;Li, Weijing;Li, Chen;Fei, Fan;Liu, Baoliang;Shao, Changwei;Liu, Yuyan;Wang, Qian;Shao, Changwei
关键词:Spotted sea bass; Flow velocity; Oxidative stress; Lipid metabolism; Transcriptomics
-
Near complete genome assembly of Yadong trout (Salmo trutta)
作者:Li, Chen;Han, Shenglei;Li, Shuo;Liu, Kaiqiang;Liu, Yuyan;Wang, Hong-yan;Wang, Qian;Liu, Changlin;Shao, Changwei;Li, Chen;Li, Chen;Han, Shenglei;Li, Shuo;Liu, Kaiqiang;Liu, Yuyan;Wang, Hong-yan;Wang, Qian;Liu, Changlin;Shao, Changwei;Liu, Kaiqiang;Liu, Yuyan;Wang, Hong-yan;Wang, Qian;Shao, Changwei
关键词:
-
Single-cell transcriptome atlas of lamprey exploring Natterin- induced white adipose tissue browning
作者:Pang, Yue;Du, Zeyu;Zhang, Jin;Lu, Jiali;Li, Jun;Dong, Xinrui;Zhao, Zhisheng;Chuan, Shunqin;Sun, Mingjie;Li, Qingwei;Pang, Yue;Du, Zeyu;Zhang, Jin;Lu, Jiali;Li, Jun;Dong, Xinrui;Zhao, Zhisheng;Chuan, Shunqin;Sun, Mingjie;Li, Qingwei;Qin, Yating;Liu, Qun;Han, Kai;Yuan, Zengbao;Pan, Shanshan;Xu, Mengyang;Wang, Dantong;Li, Zhen;Chen, Yadong;Song, Yue;Zhan, Liping;Cui, Wei;Wang, Jun;Fan, Guangyi;Qin, Yating;Liu, Qun;Han, Kai;Fan, Guangyi;Qin, Yating;Liu, Qun;Han, Kai;Song, Yue;Qin, Yating;Fan, Guangyi;Yuan, Zengbao;Xu, Mengyang;Wang, Dantong;Gu, Ying;Yang, Huanming;Xu, Xun;Liu, Xin;Fan, Guangyi;Xu, Mengyang;Fan, Guangyi;Li, Shuo;Zhang, Zhe;Ni, Ming;Jia, Xiaodong;Xia, Zhangyong;Yue, Zhen;Fan, Guangyi;Gu, Ying;Yang, Huanming;Xu, Xun;Liu, Xin
关键词:
-
Prediction of soil organic carbon fractions in tropical cropland using a regional visible and near-infrared spectral library and machine learning
作者:Dai, Lingju;Wang, Zheng;Shi, Zhou;Chen, Songchao;Dai, Lingju;Chen, Songchao;Zhuo, Zhiqing;Ma, Yuxin
关键词:Particularly particulate organic carbon; Mineral-associated organic carbon; Memory-based learning; Spatial interpolation
-
Regional-scale precision mapping of cotton suitability using UAV and satellite data in arid environments
作者:He, Jianqiang;Jia, Yonglin;Li, Yi;Wu, Shufang;Li, Yi;Li, Yi;Yang, Guang;Biswas, Asim;Feng, Hao;Yu, Qiang;Siddique, Kadambot. H. M.
关键词:Arid environment; Regional-scale; Soil water content; Soil salt content; Suitability index; Cotton
-
MD-Unet for tobacco leaf disease spot segmentation based on multi-scale residual dilated convolutions
作者:Chen, Zili;Peng, Yilong;Wang, Laigang;Guo, Yan;Chen, Zili;Peng, Yilong;Jiao, Jiadong;Lin, Wei;Wang, Laigang;Guo, Yan;Wang, Aiguo
关键词:Deep learning; Tobacco leaf diseases; Lesion segmentation; Convolutional neural networks