Development of an Efficient Grading Model for Maize Seedlings Based on Indicator Extraction in High-Latitude Cold Regions of Northeast China

文献类型: 外文期刊

第一作者: Yu, Song

作者: Yu, Song;Lu, Yuxin;Zhang, Yutao;Liu, Xinran;Zhang, Yifei;Li, Mukai;Du, Haotian;Su, Shan;Liu, Jiawang;Yu, Shiqiang;Zhang, Chunyu;Yang, Jiao;Guan, Haiou;Lv, Yanjie;Guan, Haiou;Zhang, Chunyu

作者机构:

关键词: maize; low temperature stress; seedling quality; phenotypic evaluation indicators; efficient extraction; deep learning

期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )

ISSN:

年卷期: 2025 年 15 卷 2 期

页码:

收录情况: SCI

摘要: Maize, the world's most widely cultivated food crop, is critical in global food security. Low temperatures significantly hinder maize seedling growth, development, and yield formation. Efficient and accurate assessment of maize seedling quality under cold stress is essential for selecting cold-tolerant varieties and guiding field management strategies. However, existing evaluation methods lack a multimodal approach, resulting in inefficiencies and inaccuracies. This study combines phenotypic extraction technologies with a convolutional neural network-long short-term memory (CNN-LSTM) deep learning model to develop an advanced grading system for maize seedling quality. Initially, 27 quality indices were measured from 3623 samples. The RAGA-PPC model identified seven critical indices: plant height (x1), stem diameter (x2), width of the third spreading leaf (x11), total leaf area (x12), root volume (x17), shoot fresh weight (x22), and root fresh weight (x23). The CNN-LSTM model, leveraging CNNs for feature extraction and LSTM for temporal dependencies, achieved a grading accuracy of 97.57%, surpassing traditional CNN and LSTM models by 1.28% and 1.44%, respectively. This system identifies phenotypic markers for assessing maize seedling quality, aids in selecting cold-tolerant varieties, and offers data-driven support for optimising maize production. It provides a robust framework for evaluating seedling quality under low-temperature stress.

分类号:

  • 相关文献
作者其他论文 更多>>