HYPERSPECTRAL ESTIMATION OF APPLE CANOPY CHLOROPHYLL CONTENT USING AN ENSEMBLE LEARNING APPROACH
文献类型: 外文期刊
第一作者: Bai, Xueyuan
作者: Bai, Xueyuan;Song, Yingqiang;Yu, Ruiyang;Xiong, Jingling;Peng, Yufeng;Zhu, Xicun;Jiang, Yuanmao;Yang, Guijun;Li, Zhenhai;Zhu, Xicun
作者机构:
关键词: Apple tree canopy; Chlorophyll content; Crop stress monitoring; Ensemble learning; Hyperspectral; Vegetation index
期刊名称:APPLIED ENGINEERING IN AGRICULTURE ( 影响因子:0.985; 五年影响因子:1.02 )
ISSN: 0883-8542
年卷期: 2021 年 37 卷 3 期
页码:
收录情况: SCI
摘要: Rapidly and effective monitoring of the canopy chlorophyll content (CCC) of apple trees is of great significance for crop stress monitoring in precision agriculture. This study attempted to use hyperspectral vegetation indices (VIs) to estimate the CCC of apple trees based on ensemble learning approach. In this study, vegetation indices combined by any two wavelengths from 400 to 1100 nm were constructed to calculate the correlation coefficient with the CCC in apple. We constructed a partial least squares regression model (PLSR), artificial neural network regression model (ANN), support vector machine regression (SVR), random forest regression (RF) model and support vector machine combination regression model (C-SVR) based on combinations of VIs to improve the estimation accuracy in apple CCC. The results showed that the correlation coefficients between NDVI (949,695), OSAVI (828,705), RDVI (741,725), RVI (716,707), DVI (572,532), and apple CCC were all above 0.76. The CCC estimation model using the RF and C-SVR approach constructed by the NDVI (949,695), OSAVI (828,705), RDVI (741,725), RVI (716,707), and DVI (572,532) achieved the better estimation results, and the R-V(2), RMSEV, and RPDV values of models were 0.76, 0.131(mg.g(-1)), 2.04 and 0.78, 0.127(mg.g(-1)), 2.12, respectively. Compared with the PLSR, ANN, and SVR model, the R-V(2) and RPDV values of C-SVR model were increased by 4%, 1.2%, 3.8%, and 5.0%, 28.4%, 7.1%, respectively. The results show that using C-SVR approach to estimating the apple CCC can realize high accuracy of quantitative estimation. Ensemble learning approach is an effective method for monitoring the nutrient status of fruit trees based on hyperspectral technique.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm
作者:Guo, Xiaozheng;Yao, Yunjun;Jia, Kun;Zhang, Xiaotong;Yang, Junming;Yu, Ruiyang;Xie, Zijing;Liu, Lu;Ning, Jing;Tang, Qingxin;Liang, Shunlin;Shao, Changliang;Fisher, Joshua B.;Chen, Jiquan;Shang, Ke;Zhang, Lilin
关键词:Latent heat flux; Integration algorithm; CNN-LSTM; Landsat; High -spatial -resolution products
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response