Effects of high hydrostatic pressure on the structure and retrogradation inhibition of oat starch
文献类型: 外文期刊
第一作者: Zhang, Jing
作者: Zhang, Jing;Zhang, Meili;Zhang, Yakun;Bai, Xue;Wang, Chen;Zhang, Jing;Zhang, Jing;Zhang, Jing
作者机构:
关键词: HHP treatment; microstructure; retrogradation kinetic; water distribution
期刊名称:INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY ( 影响因子:3.612; 五年影响因子:3.575 )
ISSN: 0950-5423
年卷期: 2022 年 57 卷 4 期
页码:
收录情况: SCI
摘要: As a non-thermal processing technology, high hydrostatic pressure (HHP) can be used for starch modification without affecting the quality and flavour constituents. The effect of HHP on starch is closely related to the treatment pressure of HHP. In this paper, we investigated the impacts of HHP treatment pressure (0, 100, 200, 300, 400, 500, 600 MPa) on the microstructure and retrogradation characteristics of oat starch, established the retrogradation kinetic model and elaborated the mechanism of HHP treatment inhibiting the retrogradation of oat starch. Results show that HHP treatment caused the microstructure of oat starch experienced crystallisation perfection (100-300 MPa), crystallisation destruction (400 MPa), crystallisation disintegration and gelatinisation (500-600 MPa). Results of oat starch retrogradation showed that, after treated at 500 MPa for 15 min, the recrystallisation rate of oat starch was reduced, the formation of nuclei at the early stage of oat starch retrogradation suppressed and its nucleation mode was changed from instantaneous to spontaneous, otherwise, the mobility of water in oat starch gel system reduced. Therefore, 500 MPa treated for 15 min can inhibits the retrogradation of oat starch. This study provides theoretical guidance for the application of HHP technology in starch modification and food processing.
分类号:
- 相关文献
作者其他论文 更多>>
-
Insight into the sorption and desorption pattern of pyrrolizidine alkaloids and their N-oxides in acidic tea ( Camellia sinensis ) plantation soils
作者:Lu, Yuting;Han, Haolei;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Yang, Xiangde;Chen, Hongping;Lu, Yuting;Han, Haolei;Yi, Yuexing;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Chen, Hongping;Chai, Yunfeng;Wang, Chen;Zhang, Xiangchun;Chen, Hongping
关键词:Pyrrolizidine alkaloids; Sorption -desorption behavior; Tea plantation system; Acidic soil; Linear regression model
-
A novel biosensor for detecting V. parahaemolyticus based on cascade signal amplification of CRISPR/Cas14a and Exo III
作者:Wang, Jiahong;Gao, Yuhan;Zhang, Wenhui;Wang, Jiahong;Sun, He;Gao, Yuhan;Bu, Shengjun;Zhang, Zebin;Wang, Chen;Wan, Jiayu;Zhang, Hongyi
关键词:Vibrio parahaemolyticus; Exonuclease III; CRISPR/Cas14a; Aptamer; Cyclic signal amplification
-
Recent progress in metal-organic frameworks-based biosensors for pathogen detection
作者:Hu, Wen-Chao;Xia, Xing-Hua;Zhao, Xiao-Ping;Zhao, Xiao-Ping;Wang, Jin;Wang, Chen
关键词:Metal-organic frameworks (MOFs); Biosensor; Pathogen detection; Biorecognition; Signal transduction
-
Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments
作者:Bai, Xue;Wang, Tao;Li, Diyan;Bai, Xue;Li, Mingzhou;Zhong, Hang;Sun, Jing;Cui, Xiang;Gu, Yiren;Miao, Xiaomeng;Li, Jing;Lu, Lizhi;Xu, Wenwu;Sun, Jing
关键词:Metagenome; ARGs; Animal gut; Soil; Indicators
-
The UDP-glycosyltransferase gene OsUGT706E2 negatively regulates rice tolerance to blast disease and abiotic stresses
作者:Chen, Pingli;Jiang, Liqun;Zhang, Lanlan;Sun, Bingrui;Lv, Shuwei;Zhang, Jing;Yu, Hang;Mao, Xingxue;Fan, Zhilan;Li, Chen;Chen, Wenfeng;Liu, Qing
关键词:UDP-glycosyltransferase; Blast disease; Cold stress; Osmotic stress
-
Re-Engineering Fungal Nonribosomal Peptide Synthetases by Module Dissection and Duplicated Thiolation Domains
作者:Yin, Miaomiao;Xie, Linan;Chen, Kang;Zhang, Liwen;Yue, Qun;Wang, Chen;Zeng, Juntian;Hao, Xiaoyang;Gu, Xiaofeng;Xu, Yuquan;Xie, Linan;Zhang, Liwen;Yue, Qun;Wang, Chen;Xu, Yuquan;Molnar, Istvan
关键词:nonribosomal peptide synthetase; heterologous expression; natural products; combinatorial biosynthesis; synthetic biology
-
African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis
作者:Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue;Wen, Yuan;Duan, Xianghan;Ren, Jingjing;Zhang, Jing;Guan, Guiquan;Ru, Yi;Li, Dan;Zheng, Haixue
关键词:African swine fever virus; I267L; hemorrhage; F3; tissue factor