Effective methods for mitigate the impact of light occlusion on the accuracy of online cabbage recognition in open fields
文献类型: 外文期刊
第一作者: Fu, Hao
作者: Fu, Hao;Chen, Liping;Fu, Hao;Zha, Xueguan;Ta, Haoran;Zheng, Shengyu;Zhai, Changyuan;Chen, Liping
作者机构:
关键词: Cabbage; Light occlusion; Object detection; Online recognition
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN: 2097-2113
年卷期: 2025 年 15 卷 3 期
页码:
收录情况: SCI
摘要: To address the low recognition accuracy of open-field vegetables under light occlusion, this study focused on cabbage and developed an online target recognition model based on deep learning. Using Yolov8n as the base network, a method was proposed to mitigate the impact of light occlusion on the accuracy of online cabbage recognition. A combination of cabbage image filters was designed to eliminate the effects of light occlusion. A filter parameter adaptive learning module for cabbage image filter parameters was constructed. The image filter combination and adaptive learning module were embedded into the Yolov8n object detection network. This integration enabled precise real-time recognition of cabbage under light occlusion conditions. Experimental results showed recognition accuracies of 97.5 % on the normal lighting dataset, 93.1 % on the light occlusion dataset, and 95.0 % on the mixed dataset. For images with a light occlusion degree greater than 0.4, the recognition accuracy improved by 9.9 % and 13.7 % compared to Yolov5n and Yolov8n models. The model achieved recognition accuracies of 99.3 % on the Chinese cabbage dataset and 98.3 % on the broccoli dataset. The model was deployed on an Nvidia Jetson Orin NX edge computing device, achieving an image processing speed of 26.32 frames per second. Field trials showed recognition accuracies of 96.0 % under normal lighting conditions and 91.2 % under light occlusion. The proposed online cabbage recognition model enables real-time recognition and localization of cabbage in complex open-field environments, offering technical support for target-oriented spraying. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Improving UASS pesticide application: optimizing and validating drift and deposition simulations
作者:Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Hewitt, Andrew
关键词:lattice Boltzmann method (LBM); unmanned aerial spraying systems (UASS); Pest management; pesticide drift and deposition; optimization
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Deposition Characteristics of Air-Assisted Sprayer Based on Canopy Volume and Leaf Area of Orchard Trees
作者:Gu, Chenchen;Sun, Jiahui;Li, Si;Yang, Shuo;Zhai, Changyuan;Gu, Chenchen;Li, Si;Yang, Shuo;Zou, Wei
关键词:canopy volume; leaf area; air-assisted spraying; precision application; deposition characteristics
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1
-
Characteristics of Spot Spraying and Continuous Spraying Systems
作者:Zhao, Xueguan;Zhang, Chunfeng;Zhao, Xueguan;Ma, Zhanwei;Zhang, Chunfeng;Wang, Zhichong;Zhai, Changyuan;Ma, Zhanwei;Zhang, Xinwei;Chen, Jing
关键词:spot spraying method; atomization characteristics; spray angle; spray height; target size