Plant Availability of Magnesium in Typical Tea Plantation Soils

文献类型: 外文期刊

第一作者: Zhang, Qunfeng

作者: Zhang, Qunfeng;Tang, Dandan;Yang, Xiangde;Geng, Saipan;He, Ying;Chen, Yupei;Yi, Xiaoyun;Ni, Kang;Liu, Meiya;Ruan, Jianyun

作者机构:

关键词: Mg fertilization; tea plant; Mg efficiency; plant availability of Mg; tea plantation soils

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.754; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2021 年 12 卷

页码:

收录情况: SCI

摘要: Background and Aims: Magnesium (Mg) fertilizer has been proved to play an important role in improving the yield and quality of tea. However, plant availability of Mg, including its use, efficiency, and quality improvement effects, were highly affected by plant species, soil characteristics (nutritional status, etc.), and Mg status (chemical-available, etc.). Methods: Tea plants were pot-cultivated in 12 typical tea plantation soils amended with and without Mg fertilizer. Exchangeable Mg (Ex-Mg) concentration in soils was quantitatively extracted using four extraction solutions (Mehlich-3, BaCl2, CaCl2, and NH(4)OAC). Plant availability of Mg was evaluated by Mg uptake and its use efficiency, as well as its association with quality components in tea plants. Results: Ex-Mg in soils was extracted most efficiently by Mehlich-3, while Mg concentrations in tea plant tissue were higher correlated with Ex-Mg extracted by CaCl2 than other extraction solutions. Mg fertilizer use efficiency in tea plant varied from 6.08 to 29.56 %, and the effect of Mg application on tea quality improvement and the use efficiency ofMg fertilizer both negatively correlated with total Mg concentration (r = -0.94 and -0.63, respectively) and nitrogen (N) level (r = -0.61 and -0.51, respectively) in soils prior to tea plant cultivation. Conclusions: CaCl2 could be recommended for plant-available Mg extraction in tea plantation soil, and Mg fertilizer use efficiency could be affected and predicted by total N and Mg status in soils prior to tea plant cultivation, providing a potential theoretical for the guidance of Mg fertilization for tea yield and quality improvement in tea plantation management.

分类号:

  • 相关文献
作者其他论文 更多>>