Molecular insights into OPR gene family in Saccharum identified a ScOPR2 gene could enhance plant disease resistance

文献类型: 外文期刊

第一作者: Sun, Tingting

作者: Sun, Tingting;Wu, Qibin;Zang, Shoujian;Zou, Wenhui;Wang, Dongjiao;Wang, Wenzhi;Shen, Linbo;Zhang, Shuzhen;Que, Youxiong;Zang, Shoujian;Wang, Dongjiao;Su, Yachun;Que, Youxiong

作者机构:

关键词: sugarcane; 12-oxo-phytodienoic acid reductases; genome-wide identification; disease resistance; RNA-seq

期刊名称:PLANT JOURNAL ( 影响因子:6.2; 五年影响因子:7.1 )

ISSN: 0960-7412

年卷期: 2024 年

页码:

收录情况: SCI

摘要: 12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.

分类号:

  • 相关文献
作者其他论文 更多>>