Orchid2024: A cultivar-level dataset and methodology for fine-grained classification of Chinese Cymbidium Orchids

文献类型: 外文期刊

第一作者: Peng, Yingshu

作者: Peng, Yingshu;Zhou, Yuxia;Zhang, Li;Fu, Hongyan;Tang, Guimei;Huang, Guolin;Li, Weidong;Peng, Yingshu;Zhou, Yuxia;Zhang, Li;Fu, Hongyan;Tang, Guimei;Huang, Guolin;Li, Weidong

作者机构:

关键词: Chinese Cymbidium orchids; Orchid image dataset; Fine-grained image classification; Visual parameter-efficient fine-tuning

期刊名称:PLANT METHODS ( 影响因子:4.7; 五年影响因子:5.6 )

ISSN:

年卷期: 2024 年 20 卷 1 期

页码:

收录情况: SCI

摘要: Background Chinese Cymbidium orchids, cherished for their deep-rooted cultural significance and significant economic value in China, have spawned a rich tapestry of cultivars. However, these orchid cultivars are facing challenges from insufficient cultivation practices and antiquated techniques, including cultivar misclassification, complex identification, and the proliferation of counterfeit products. Current commercial techniques and academic research primarily emphasize species identification of orchids, rather than delving into that of orchid cultivars within species. Results To bridge this gap, the authors dedicated over a year to collecting a cultivar image dataset for Chinese Cymbidium orchids named Orchid2024. This dataset contains over 150,000 images spanning 1,275 different categories, involving visits to 20 cities across 12 provincial administrative regions in China to gather pertinent data. Subsequently, we introduced various visual parameter-efficient fine-tuning (PEFT) methods to expedite model development, achieving the highest top-1 accuracy of 86.14% and top-5 accuracy of 95.44%. Conclusion Experimental results demonstrate the complexity of the dataset while highlighting the considerable promise of PEFT methods within flower image classification. We believe that our work not only provides a practical tool for orchid researchers, growers and market participants, but also provides a unique and valuable resource for further exploring fine-grained image classification tasks. The dataset and code are available at https://github.com/pengyingshu/Orchid2024.

分类号:

  • 相关文献
作者其他论文 更多>>