Sugarcane ScCAX4 is a Negative Regulator of Resistance to Pathogen Infection

文献类型: 外文期刊

第一作者: Zhang, Chang

作者: Zhang, Chang;Sun, Tingting;Wu, Qibin;Que, Youxiong;Zhang, Chang;Li, Zhenxiang;Zang, Shoujian;Wang, Dongjiao;Su, Yachun;Wu, Qibin;Que, Youxiong

作者机构:

关键词: sugarcane; CAX; disease resistance; regulatory mechanism; RNA-seq

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.1; 五年影响因子:6.3 )

ISSN: 0021-8561

年卷期: 2024 年 72 卷 23 期

页码:

收录情况: SCI

摘要: Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T-2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.

分类号:

  • 相关文献
作者其他论文 更多>>