IPMCNet: A Lightweight Algorithm for Invasive Plant Multiclassification
文献类型: 外文期刊
第一作者: Chen, Ying
作者: Chen, Ying;Qiao, Xi;Qin, Feng;Huang, Hongtao;Huang, Yiqi;Chen, Ying;Qiao, Xi;Qin, Feng;Huang, Hongtao;Liu, Bo;Li, Zaiyuan;Liu, Conghui;Wang, Quan;Wan, Fanghao;Qian, Wanqiang
作者机构:
关键词: deep learning; plant identification; in-field detection; convolutional neural network; invasive plants
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2024 年 14 卷 2 期
页码:
收录情况: SCI
摘要: Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the use of deep learning models often involve a large number of parameters and high data requirements for training. Unfortunately, the available data for various invasive plant species are often limited. To address this challenge, this study proposes a lightweight deep learning model called IPMCNet for the identification of multiple invasive plant species. IPMCNet attains high recognition accuracy even with limited data and exhibits strong generalizability. Simultaneously, by employing depth-wise separable convolutional kernels, splitting channels, and eliminating fully connected layer, the model's parameter count is lower than that of some existing lightweight models. Additionally, the study explores the impact of different loss functions, and the insertion of various attention modules on the model's accuracy. The experimental results reveal that, compared with eight other existing neural network models, IPMCNet achieves the highest classification accuracy of 94.52%. Furthermore, the findings suggest that focal loss is the most effective loss function. The performance of the six attention modules is suboptimal, and their insertion leads to a decrease in model accuracy.
分类号:
- 相关文献
作者其他论文 更多>>
-
Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum
作者:Chen, Meichun;Deng, Yingjie;Xiao, Rongfeng;Liu, Bo;Wang, Jieping;Deng, Yingjie;Wang, Xun;He, Jin;Deng, Yingjie;Wang, Xun;He, Jin;Zheng, Meixia
关键词:crop protection; antifungal peptides; lipopeptides; pathogenic fungus; Fusarium concentricum; cell apoptosis
-
The Function of Different Subunits of the Molecular Chaperone CCT in the Microsporidium Nosema bombycis: NbCCTζ Interacts with NbCCTα
作者:Xu, Sheng;Chen, Ying;Qi, Jingru;Wang, Runpeng;Wei, Erjun;Wang, Qiang;Zhang, Yiling;Tang, Xudong;Shen, Zhongyuan;Wang, Qiang;Zhang, Yiling;Tang, Xudong;Shen, Zhongyuan
关键词:microsporidia; chaperonin; CCT zeta; coordinating function; immunolocalization
-
Design and validation of a sampling module for a cyclonic wet-wall bioaerosol sampler using a computational fluid dynamics model
作者:Jiang, Shuyi;Wang, Xinmei;Zhang, Shuo;Hou, Lixia;Qiao, Xi;Wu, Qiang;Qiao, Xi
关键词:Pollen; Sampling module; CFD modeling; Response surface methodology
-
A Cucumber Leaf Disease Severity Grading Method in Natural Environment Based on the Fusion of TRNet and U-Net
作者:Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Yao, Hui;Wang, Chunshan;Liu, Bo;Liang, Fangfang;Wang, Chunshan;Zhang, Lijie;Li, Jiuxi
关键词:cucumber disease; disease spot; fusion of TRNet and U-Net; two-stage segmentation framework; disease severity grading
-
Molecular mechanism of emodin in inhibiting the activity of Aeromonas hydrophila via AtpE
作者:Zhang, Huimin;Zhou, Jun;Li, Xuguang;Deng, Yanfei;Ge, Xianping;Liu, Bo
关键词:Aeromonas hydrophila; AtpE; emodin; inhibition mechanism; molecular dynamics simulation
-
Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development
作者:Yan, Mei;Jiao, Guiai;Shao, Gaoneng;Chen, Ying;Zhu, Maodi;Yang, Lingwei;Xie, Lihong;Hu, Peisong;Tang, Shaoqing
关键词:NAC; Oryza sativa; Premature; Chalky; Cell cycle
-
Transcriptome analysis reveals the oxidative damage and immune-suppression of leech (Whitmania pigra Whitman) intestine induced by high-temperature stress
作者:Xiong, Liangwei;Zheng, Yi;Wang, Shuaibing;Zheng, Xiaochuan;Li, Zhengzhong;Liu, Bo;Liu, Shijie;Wang, Haihua;Ma, Benhe;Liu, Shengli;Xiong, Liangwei
关键词:Whitmania pigra; High-temperature stress; Transcriptome analysis; Antioxidant capacity