MTNA: A deep learning based predictor for identifying multiple types of N-terminal protein acetylated sites

文献类型: 外文期刊

第一作者: Chen, Yongbing

作者: Chen, Yongbing;Qin, Wenyuan;Liu, Tong;Li, Ruikun;He, Fei;Han, Ye;Ma, Zhiqiang;Ren, Zilin

作者机构:

关键词: protein translational modification; protein acetylation; N-terminal acetylated sites; deep learning

期刊名称:ELECTRONIC RESEARCH ARCHIVE ( 影响因子:0.8; 五年影响因子:0.8 )

ISSN:

年卷期: 2023 年 31 卷 9 期

页码:

收录情况: SCI

摘要: N-terminal acetylation is a specific protein modification that occurs only at the N-terminus but plays a significant role in protein stability, folding, subcellular localization and protein-protein interactions. Computational methods enable finding N-terminal acetylated sites from large-scale proteins efficiently. However, limited by the number of the labeled proteins, existing tools only focus on certain subtypes of N-terminal acetylated sites on frequently detected amino acids. For example, NetAcet focuses on alanine, glycine, serine and threonine only, and N-Ace predicts on alanine, glycine, methionine, serine and threonine. With the growth of experimental N-terminal acetylated site data, it is observed that N-terminal protein acetylation occurs on nearly ten types of amino acids. To facilitate comprehensive analysis, we have developed MTNA (Multiple Types of N-terminal Acetylation), a deep learning network capable of accurately predicting N-terminal protein acetylation sites for various amino acids at the N-terminus. MTNA not only outperforms existing tools but also has the capability to identify rare types of N-terminal protein acetylated sites occurring on less studied amino acids.

分类号:

  • 相关文献
作者其他论文 更多>>