Combining UAV Multispectral Imaging and PROSAIL Model to Estimate LAI of Potato at Plot Scale

文献类型: 外文期刊

第一作者: Li, Shuang

作者: Li, Shuang;Lin, Yongxin;Zhu, Ping;Jin, Liping;Bian, Chunsong;Liu, Jiangang;Jin, Liping

作者机构:

关键词: potato; leaf area index; UAV multispectral imaging; PROSAIL; phenotyping

期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.8 )

ISSN:

年卷期: 2024 年 14 卷 12 期

页码:

收录情况: SCI

摘要: Accurate and rapid estimation of the leaf area index (LAI) is essential for assessing crop growth and nutritional status, guiding farm management, and providing valuable phenotyping data for plant breeding. Compared to the tedious and time-consuming manual measurements of the LAI, remote sensing has emerged as a valuable tool for rapid and accurate estimation of the LAI; however, the empirical inversion modeling methods face challenges of low efficiency for actual LAI measurements and poor model interpretability. The integration of radiative transfer models (RTMs) can overcome these problems to some extent. The aim of this study was to explore the potential of combining the PROSAIL model with high-resolution unmanned aerial vehicle (UAV) multispectral imaging to estimate the LAI across different growth stages at the plot scale. In this study, four inversion strategies for estimating the LAI were tested. Firstly, two types of lookup tables (LUTs) were built to estimate potato LAI of different varieties across different growth stages. Specifically, LUT1 was based on band reflectance, and LUT2 was based on vegetation index. Secondly, the hybrid models combining LUTs generated by PROSAIL and two machine learning algorithms (random forest (RF), Partial Least Squares Regression (PLSR)) are built to estimate potato LAI. The determination of coefficient (R2) of models for estimating LAI by LUTs ranged from 0.24 to 0.64. The hybrid method that integrates UAV multispectral, PROSAIL, and machine learning significantly improved the accuracy of LAI estimation. Compared to the results based on LUT2, the hybrid model achieved higher accuracy with the R2 of the inversion model improved by 30% to 263%. The LAI retrieval model using the PROSAIL model and PLSR achieved an R2 as high as 0.87, while the R2 using the RF algorithm ranged from 0.33 to 0.81. The proposed hybrid model, integrated with UAV multispectral data, PROSAIL, and PLSR can achieve approximate accuracy compared with the empirical inversion models, which can alleviate the labor-intensive process of handheld LAI measurements for building inversion models. Thus, the hybrid approach provides a feasible and efficient strategy for estimating the LAI of potato varieties across different growth stages at the plot scale.

分类号:

  • 相关文献
作者其他论文 更多>>